Функциональные и стохастические связи. Стохастическая зависимость Стохастическая судьба литературного произведения

Стохастическая эмпирическая зависимость

Зависимость между случайными величинами называется стохастической зависимостью. Она проявляется в изменении закона распределения одной из них (зависимой переменной) при изменении других (аргументов).

Графически стохастическая эмпирическая зависимость, в системе координат зависимая переменная - аргументы , представляет собой множество случайно расположенных точек, которое отражает общую тенденцию поведения зависимой переменной при изменении аргументов.

Стохастическая эмпирическая зависимость от одного аргумента называется парной зависимостью, если аргументов более одного - многомерной зависимостью. Пример парной линейной зависимости приведён на рис. 1.()

Рис. 1.

В отличие от обычной функциональной зависимости, в которой изменениям значения аргумента (или нескольких аргументов) отвечает изменение детерминированной зависимой переменной, в стохастической зависимости при этом происходит изменение статистического распределения случайной зависимой переменной, в частности, математического ожидания.

Задача математического моделирования (аппроксимации)

Построение стохастической зависимости иначе называется математическим моделированием (аппроксимацией) или приближением и состоит в нахождении её математического выражения (формулы).

Эмпирически установленная формула (функция), которая отражает не всегда известную, но объективно существующую истинную зависимость и отвечает основному, устойчивому, повторяющемуся отношению между предметами, явлениями или их свойствами, рассматривается как математическая модель.

Устойчивое отношение вещей и их истинная зависимость. моделируется она или нет, существует объективно, имеет математическое выражение, и рассматривается как закон или его следствие.

Если подходящие закон или следствие из него известны, то их естественно рассматривать в качестве искомой аналитической зависимости. Например, эмпирическая зависимость силы тока I в цепи от напряжения U и сопротивления нагрузки R следует из закона Ома:

К сожалению, истинная зависимость переменных в подавляющем большинстве случаев априорно неизвестна, поэтому возникает необходимость её обнаружения, исходя из общих соображений и теоретических представлений, то есть построения математической модели рассматриваемой закономерности. При этом учитывается, что заданные переменные и их приращения на фоне случайных колебаний отражают математические свойства искомой истинной зависимости(поведение касательных, экстремумы, корни, асимптоты и т.п.)

Подбираемая, так или иначе, аппроксимирующая функция сглаживает (усредняет) случайные колебания исходных эмпирических значений зависимой переменной и, подавляя тем самым случайную составляющую, является приближением к регулярной составляющей и, стало быть, к искомой истинной зависимости.

Математическая модель эмпирической зависимости имеет теоретическое и практическое значение:

· позволяет установить адекватность экспериментальных данных тому или иному известному закону и выявить новые закономерности;

· решает для зависимой переменной задачи интерполяции внутри заданного интервала значений аргумента и прогнозирования (экстраполяции) за пределами интервала.

Однако, несмотря на большой теоретический интерес нахождения математической формулы для зависимости величин, на практике часто достаточно лишь определить, есть ли между ними связь и какова её сила.

Задача корреляционного анализа

Методом изучения взаимосвязи между изменяющимися величинами является корреляционный анализ.

Ключевым понятием корреляционного анализа, описывающим связь между переменными является корреляция (от английского correlation - согласование, связь, взаимосвязь, соотношение, взаимозависимость ).

Корреляционный анализ используется для обнаружения стохастической зависимости и оценки её силы (значимости) по величине коэффициентов корреляции и корреляционного отношения.

Если связь между переменными обнаружена, то говорят, что корреляция присутствует или что переменные коррелированны.

Показатели тесноты связи (коэффициент корреляции, корреляционное отношение) по модулю изменяются от 0(при отсутствии связи) до 1(при вырождении стохастической зависимости в функциональную).

Стохастическая связь полагается значимой (реальной), если абсолютная оценка коэффициента корреляции (корреляционного отношения) значима, то есть в 2-3 превышает стандартное отклонение оценки коэффициента.

Отметим, что в некоторых случаях связь может быть обнаружена между явлениями, не находящимися в очевидных причинно-следственных отношениях.

Например, для некоторых сельских районов выявлена прямая стохастическая связь между числом гнездящихся аистов и рождающихся детей. Весенний подсчёт аистов позволяет предсказывать, сколько в этом году родится детей, но зависимость, конечно, не доказывает известное поверье, и объясняется параллельными процессами:

· рождению детей обычно предшествует образование и обустройство новых семей с обзаведением сельскими домами и подворьями;

· расширение возможностей гнездования привлекает птиц и увеличивает их количество.

Подобная корреляция между признаками называется ложной(мнимой) корреляцией, хотя она может иметь прикладное значение.

Рассматривая зависимость между признаками, выделим прежде всего зависимость между изменением факторного и результативного признаков, когда вполне определенному значению факторного признака соответствует множество возможных значений результативного признака. Иначе говоря, каждому значению одной переменной соответствует определенное (условное) распределение другой переменной. Такая зависимость называется стохастической. Возникновение понятия стохастической зависимости обусловливается тем, что зависимая переменная подвержена влиянию ряда неконтролируемых или неучтенных факторов, а также тем, что изменение значений переменных неизбежно сопровождается некоторыми случайными ошибками. Примером стохастической связи является зависимость урожайности сельскохозяйственных культур Y от массы внесенных удобрений X. Точно предсказать урожайность мы не можем, так как на нее влияет множество факторов (осадки, состав почвы и т.д.). Однако очевидно, что с изменением массы удобрений будет меняться и урожайность.

В статистике изучаются наблюдаемые значения признаков, поэтому стохастическую зависимость называют обычно статистической зависимостью.

В силу неоднозначности статистической зависимости между значениями результативного признака У и значениями факторного признака X представляет интерес усредненная по X схема зависимости, т.е. закономерность, выражаемая условным математическим ожиданием M(Y/X = х) (вычисленного при фиксированном значении факторного признака X = х ). Зависимости такого рода называются регрессионными , а функция ср(х) = M(Y/X = х) - функцией регрессии Y на X или прогнозом Y по X (обозначение у х = ф(л)). При этом результативный признак Y называют также функцией отклика или объясняемой, выходной, результирующей, эндогенной переменной, а факторный признак X - регрессором или объясняющей, входной, предсказывающей, предикторной, экзогенной переменной.

В параграфе 4.7 доказывалось, что условное математическое ожидание M(Y/X) = ср(х) дает наилучший прогноз У по X в среднеквадратическом смысле, т.е. M(Y- ф(х)) 2 M(Y-g(x)) 2 , где g(x) - любой другой прогноз УпоХ.

Итак, регрессия - это односторонняя статистическая зависимость, устанавливающая соответствия между признаками. В зависимости от числа факторных признаков, описывающих явление, различают парную и множественную регрессии. Например, парная регрессия - это регрессия между затратами на производство (факторный признак X) и объемом продукции, производимой предприятием (результативный признак У). Множественная регрессия - это регрессия между производительностью труда (результативный признак У) и уровнем механизации производственных процессов, фондом рабочего времени, материалоемкостью, квалификацией рабочих (факторные признаки X t , Х 2 , Х 3 , Х 4).

По форме различают линейную и нелинейную регрессии, т.е. регрессии, выражаемые линейной и нелинейной функциями.

Например, ф(Х) = аХ + Ъ - парная линейная регрессия; ф(Х) = аХ 2 + + ЬХ + с - квадратическая регрессия; ф(Х 1? Х 2 ,..., Х п ) = р 0 4- fi { X { + р 2 Х 2 + ... + p„X w - множественная линейная регрессия.

Проблема выявления статистической зависимости имеет две стороны: установление тесноты (силы) связи и определение формы связи.

Установлению тесноты (силы) связи посвящен корреляционный анализ , назначение которого - получить на основе имеющихся статистических данных ответы на следующие основные вопросы:

  • как выбрать подходящий измеритель статистической связи (коэффициент корреляции, корреляционное отношение, ранговый коэффициент корреляции и т.п.);
  • как проверить гипотезу о том, что полученное числовое значение измерителя связи действительно свидетельствует о наличии статистической связи.

Определением формы связи занимается регрессионный анализ. При этом назначение регрессионного анализа - решение на основе имеющихся статистических данных следующих задач:

  • выбор вида функции регрессии (выбор модели);
  • нахождение неизвестных параметров выбранной функции регрессии;
  • анализ качества функции регрессии и проверка адекватности уравнения эмпирическим данным;
  • прогноз неизвестных значений результативного признака по заданным значениям факторных признаков.

На первый взгляд может показаться, что понятие регрессии сходно с понятием корреляции, так как в обоих случаях речь идет о статистической зависимости между исследуемыми признаками. Однако на самом деле между ними есть существенные различия. Регрессия подразумевает причинную взаимосвязь, когда изменение условного среднего значения результативного признака происходит вследствие изменения факторных признаков. Корреляция же ничего не говорит о причинной зависимости между признаками, т.е. если установлено наличие корреляции между X и У, то этот факт не подразумевает того, что изменения значений X обусловливают изменение условного среднего значения У. Корреляция всего лишь констатирует факт того, что изменения одной величины в среднем соотносятся с изменениями другой.

зависимость между случайными величинами, при которой изменение закона распределения одной из них происходит под влиянием изменения другой.


Смотреть значение Зависимость Стохастическая в других словарях

Зависимость — подневольность
подвластность
подчиненность
Словарь синонимов

Зависимость Ж. — 1. Отвлеч. сущ. по знач. прил.: зависимый (1). 2. Обусловленность чего-л. какими-л. обстоятельствами, причинами и т.п.
Толковый словарь Ефремовой

Зависимость — -и; ж.
1. к Зависимый. Политическая, экономическая, материальная з. З. от чего-л. тяготит, гнетёт меня. З. теории от практики. Жить в зависимости. Крепостная з. (состояние........
Толковый словарь Кузнецова

Зависимость — - состояние экономического субъекта, при котором его существование и деятельность зависят от материальной и финансовой поддержки или взаимодействия с другими субъектами.
Юридический словарь

Зависимость Фишера — - зависимость, устанавливающая, что рост уровня ожидаемой инфляции имеет тенденцию поднимать номинальные процентные ставки. В наиболее строгом варианте - зависимость........
Юридический словарь

Линейная Зависимость — - экономико-математические модели в виде формул, уравнений, в которых экономические величины, параметры (аргумент и функция) связаны между собой линейной функцией. Простейший........
Юридический словарь

Лекарственная Зависимость — синдром, наблюдающийся при нарко- или токсикоманиях и характеризующийся патологической потребностью в приеме психотропного средства с тем, чтобы избежать развития........
Большой медицинский словарь

Лекарственная Зависимость Психическая — Л. з. без явлений абстиненции в случае прекращения приема лекарственного средства.
Большой медицинский словарь

Лекарственная Зависимость Физическая — Л. з. с явлениями абстиненции в случае прекращения приема лекарственного средства или после введения его антагонистов.
Большой медицинский словарь

Крепостная Зависимость — личная, поземельная и административнаязависимость крестьян от землевладельцев в России (11 в. - 1861).Юридически оформлена в кон. 15 - 17 вв. крепостным правом.

Линейная Зависимость — соотношение вида С1u1+С2u2+... +Сnun?0, где С1, С2,..., Сn - числа, из которых хотя бы одно? 0, а u1, u2, ..., un -какие-либо математические объекты, напр. векторы или функции.
Большой энциклопедический словарь

Крепостная Зависимость — - личная, поземельная и административная зависимость крестьян от феодалов в России XI в. -1861 г. Юридически оформлена в конце XV-XVII вв. крепостным правом.
Исторический словарь

Крепостная Зависимость — личная зависимость крестьян в феод. об-ве от феодалов. См. Крепостное право.
Советская историческая энциклопедия

Линейная Зависимость — - см. в статье Линейная независимость.
Математическая энциклопедия

Ляпунова Стохастическая Функция — неотрицательная функция V(t, х), для к-рой пара (V(t, X(t)), Ft) - супермартингал для нек-рого случайного процесса X(t), Ft есть s-алгебра событий, порожденных течением процесса Xдо........
Математическая энциклопедия

Стохастическая Аппроксимация — метод решения класса задач статистич. оценивания, в к-ром новое значение оценки представляет собой поправку к уже имеющейся оценке, основанную на новом наблюдении.........
Математическая энциклопедия

Стохастическая Геометрия — математическая дисциплина, изучающая взаимоотношения между геометрией и теорией вероятностей. С. г. развилась из классич. интегральной геометрии и задач о геометрических........
Математическая энциклопедия

Стохастическая Зависимость — (вероятностная, статистическая) - зависимость между случайными величинами, к-рая выражается в изменении условных распределений любой из величин при изменении значений........
Математическая энциклопедия

Стохастическая Игра — - динамическая игра, у к-рой переходная функция распределения не зависит от предыстории игры, т. е. С. и. были впервые определены Л. Шепли , к-рый рассматривал антагонистич.........
Математическая энциклопедия

Стохастическая Матрица — квадратная (возможно, бесконечная) матрица с неотрицательными элементами такими, что при любом i. Множество всех С. м. n-го порядка представляет собой выпуклую оболочку........
Математическая энциклопедия

Стохастическая Непрерывность — свойство выборочных функций случайного процесса. Случайный процесс X(t), заданный на нек-ром множестве наз. стохастически непрерывным на этом множестве, если для любого........
Математическая энциклопедия

Стохастическая Неразличимость — свойство двух случайных процессов и означающее, что случайное множество является пренебрежимым, т. е. вероятность множества что равна нулю. Если Xи Yстохастически........
Математическая энциклопедия

Стохастическая Ограниченность — ограниченность по вероятности,- свойство случайного процесса X(t), к-рое выражается условием: для произвольного существует такое C>0, что при всех А. В. Прохоров.
Математическая энциклопедия

Стохастическая Последовательность — последовательность случайных величин заданная на измеримом пространстве с выделенным на нем неубывающим семейством -алгебр обладающих свойством согласованности........
Математическая энциклопедия

Стохастическая Сходимость — тоже, что сходимость по вероятности.
Математическая энциклопедия

Стохастическая Эквивалентность — отношение эквивалентности между случайными величинами, различающимися лишь на множестве нулевой вероятности. Точнее, случайные величины Х 1 и Х 2. заданные на одном........
Математическая энциклопедия

Алкогольная Зависимость — Алкоголь является наркотическим веществом, обсуждение см. в статье наркотическая зависимость.
Психологическая энциклопедия

Галлюциногенная Зависимость — Лекарственная зависимость, при которой лекарствами являются галлюциногены.
Психологическая энциклопедия

Зависимость — (Dependence). Положительное качество, способствующее здоровому психологическому развитию и росту человека.
Психологическая энциклопедия

Зависимость (dependence), Зависимость Лекарственная — (drug dependence) - физические и/или психологические эффекты, возникающие в результате привыкания к определенным лекарственным веществам; характеризуются компульсивным побуждением........
Психологическая энциклопедия

Зачастую теорию вероятностей воспринимают как раздел математики, который занимается «исчислением вероятностей».

И всё это исчисление фактически сводится к простой формуле:

«Вероятность любого события равна сумме вероятностей входящих в него элементарных событий ». Практически эта формула повторяет, привычное нам с детства, «заклинание»:

«Масса предмета равна сумме масс составляющих его частей ».

Здесь мы будем обсуждать не столь тривиальные факты из теории вероятностей. Речь пойдёт, в первую очередь, о зависимых и независимых событиях.

Важно понять, что одинаковые термины в различных разделах математики могут иметь совершенно различный смысл.

Например, когда говорят, что площадь круга S зависит от его радиуса R , то, конечно, имеется в виду функциональная зависимость

Совсем другой смысл у понятий зависимость и независимость в теории вероятностей.

Знакомство с этими понятиями начнём с простого примера.

Представьте, что вы проводите эксперимент с бросанием игральной кости в этой комнате, а ваш коллега в соседней комнате тоже подбрасывает монету. Пусть вас интересует событие А – выпадение «двойки» у вас и событие В – выпадение «решки» у вашего коллеги. Здравый смысл подсказывает: эти события независимы!

Хотя мы ещё не ввели понятия зависимости/независимости, но интуитивно ясно, что любое разумное определение независимости должно быть устроено так, чтобы эти события определялись как независимые.

Теперь обратимся к другому эксперименту. Бросается игральная кость, событие А – выпадение «двойки», событие В – выпадение нечётного числа очков. Считая, что кость симметрична, можно сразу сказать, что Р(А) = 1/6. А теперь представьте, что вам сообщают: «В результате проведенного эксперимента произошло событие В, выпало нечётное число очков». Что теперь можно сказать о вероятности события А? Понятно, что теперь эта вероятность стала равна нулю.

Для нас самое важное, что она изменилась .

Возвращаясь к первому примеру, можно сказать, информация о том, что в соседней комнате произошло событие В никак не скажется на ваших представлениях о вероятности события А. Эта вероятность не изменится от того, что вы что-то узнали о событии В.

Мы приходим к естественному и чрезвычайно важному выводу –

если информация о том, что событие В произошло меняет вероятность события А, то события А и В следует считать зависимыми, а если не меняет – то независимыми.

Этим соображениям следует придать математическую форму, определить зависимость и независимость событий с помощью формул.

Будем исходить из следующего тезиса: «Если А и В – зависимые события, то в событии А содержится информация о событии В, а в событии В содержится информация о событии А». А как узнать – содержится или нет? Ответ на этот вопрос даёт теория информации .

Из теории информации нам нужна только одна формула, которая позволяет вычислить количество взаимной информации I(A, B) для событий А и В

Не будем вычислять количество информации для различных событий или подробно обсуждать эту формулу.

Для нас важно, что если

то количество взаимной информации между событиями А и В равно нулю − события А и В независимы . Если же

то количество взаимной информации − события А и В зависимы .

Обращение к понятию информации носит здесь вспомогательный характер и, как нам кажется, позволяет сделать более осязаемыми понятии зависимости и независимости событий.

В теории вероятностей зависимость и независимость событий описывается более формально.

В первую очередь нам понадобится понятие условной вероятности .

Условная вероятность события А при условии, что событие В произошло (Р(В) ≠0), называется величина Р(А|В), вычисляемая по формуле

.

Следуя духу нашего похода к пониманию зависимости и независимости событий можно ожидать, что условная вероятность будет обладать следующим свойством: если события А и В независимы , то

Это означает, что информация о том, что событие В произошло никак не влияет на вероятность события А.

Так оно и есть!

Если события А и В независимы, то

Имеем для независимых событий А и В

и

Федеральное государственное образовательное учреждение

высшего профессионального образования

Академия Бюджета и Казначейства

Министерства финансов Российской Федерации

Калужский филиал

РЕФЕРАТ

по дисциплине:

Эконометрика

Тема: Эконометрический метод и использование стохастических зависимостей в эконометрике

Факультет учетный

Специальность

бухучет, анализ и аудит

Отделение очно-заочное

Научный руководитель

Швецова С.Т.

Калуга 2007

Введение

1. Анализ различных подходов к определению вероятности: априорный подход, апостериорно-частотный подход, апостериорно-модельный подход

2. Примеры стохастических зависимостей в экономике, их особенности и теоретико-вероятностные способы их изучения

3. Проверка ряда гипотез о свойствах распределения вероятностей для случайной компоненты как один из этапов эконометрического исследования

Заключение

Список литературы

Введение

Становление и развитие эконометрического метода происходили на основе так называемой высшей статистики – на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент временного ряда, на статистическом оценивании. Р. Фишер писал: «Статистические методы являются существенным элементом в социальных науках, и в основном именно с помощью этих методов социальные учения могут подняться до уровня наук» .

Целью данного реферата послужило изучение эконометрического метода и использования стохастических зависимостей в эконометрике.

Задачами данного реферата является проанализировать различные подходы к определению вероятности, привести примеры стохастических зависимостей в экономике, выявить их особенности и привести теоретико-вероятностные способы их изучения, проанализировать этапы эконометрического исследования.

1. Анализ различных подходов к определению вероятности: априорный подход, апостериорно-частотный подход, апостериорно-модельный подход

Для полного описания механизма исследуемого случайного эксперимента недостаточно задать лишь пространство элементарных событий. Очевидно, наряду с перечислением всех возможных исходов исследуемого случайного эксперимента мы должны также знать, как часто в длинной серии таких экспериментов могут происходить те или другие элементарные события.

Для построения (в дискретном случае) полной и законченной математической теории случайного эксперимента – теории вероятностей – помимо исходных понятий случайного эксперимента, элементарного исхода и случайного события необходимо запастись еще одним исходным допущением (аксиомой), постулирующим существование вероятностей элементарных событий (удовлетворяющих определенной нормировке), и определением вероятности любого случайного события.

Аксиома. Каждому элементу w i пространства элементарных событий Ω соответствует некоторая неотрицательная числовая характеристика p i шансов его появления, называемая вероятностью события w i , причем

p 1 + p 2 + . . . + p n + . . . = ∑ p i = 1 (1.1)

(отсюда, в частности, следует, что 0 ≤ р i ≤ 1 для всех i ).

Определение вероятности события. Вероятность любого события А определяется как сумма вероятностей всех элементарных событий, составляющих событие А, т.е. если использовать символику Р{А} для обозначения «вероятности события А », то

Р{А} = ∑ Р{ w i } = ∑ p i (1.2)

Отсюда и из (1.1) непосредственно следует, что всегда 0 ≤ Р{A } ≤ 1, причем вероятность достоверного события равна единице, а вероятность невозможного события равна нулю. Все остальные понятия и правила действий с вероятностями и событиями будут уже производными от введенных выше четырех исходных определений (случайного эксперимента, элементарного исхода, случайного события и его вероятности) и одной аксиомы.

Таким образом, для исчерпывающего описания механизма исследуемого случайного эксперимента (в дискретном случае) необходимо задать конечное или счетное множество всех возможных элементарных исходов Ω и каждому элементарному исходу w i поставить в соответствие некоторую неотрицательную (не превосходящую единицы) числовую характеристику p i , интерпретируемую как вероятность появления исхода w i (будем обозначать эту вероятность символами Р{w i }), причем установленное соответствие типа w i ↔ p i должно удовлетворять требованию нормировки (1.1).

Вероятностное пространство как раз и является понятием, формализующим такое описание механизма случайного эксперимента. Задать вероятностное пространство – это значит задать пространство элементарных событий Ω и определить в нем вышеуказанное соответствие типа

w i p i = Р { w i }. (1.3)

Для определения из конкретных условий решаемой задачи вероятности P { w i } отдельных элементарных событий используется один из следующих трех подходов.

Априорный подход к вычислению вероятностей P { w i } заключается в теоретическом, умозрительном анализе специфических условий данного конкретного случайного эксперимента (до проведения самого эксперимента). В ряде ситуаций этот предопытный анализ позволяет теоретически обосновать способ определения искомых вероятностей. Например, возможен случай, когда пространство всех возможных элементарных исходов состоит из конечного числа N элементов, причем условия производства исследуемого случайного эксперимента таковы, что вероятности осуществления каждого из этих N элементарных исходов нам представляются равными (именно в такой ситуации мы находимся при подбрасывании симметричной монеты, бросании правильной игральной кости, случайном извлечении игральной карты из хорошо перемешанной колоды и т. п.). В силу аксиомы (1.1) вероятность каждого элементарного события равна в этом случае 1/ N . Это позволяет получить простой рецепт и для подсчета вероятности любого события: если событие А содержит N A элементарных событий, то в соответствии с определением (1.2)

Р {А} = N A / N . (1.2")

Смысл формулы (1.2’) состоит в том, что вероятность события в данном классе ситуаций может быть определена как отношение числа благоприятных исходов (т. е. элементарных исходов, входящих в это событие) к числу всех возможных исходов (так называемое классическое определение вероятности). В современной трактовке формула (1.2’) не является определением вероятности: она применима лишь в том частном случае, когда все элементарные исходы равновероятны.

Апостериорно-частотный подход к вычислению вероятностей Р { w i } отталкивается, по существу, от определения вероятности, принятого так называемой частотной концепцией вероятности. В соответствии с этой концепцией вероятность P { w i } определяется как предел относительной частоты появления исхода w i в процессе неограниченного увеличения общего числа случайных экспериментов n , т.е.

p i = P { w i } = lim m n (w i ) / n (1.4)

где m n (w i ) – число случайных экспериментов (из общего числа n произведенных случайных экспериментов), в которых зарегистрировано появление элементарного события w i . Соответственно для практического (приближенного) определения вероятностей p i предлагается брать относительные частоты появления события w i в достаточно длинном ряду случайных экспериментов.

Разными в этих двух концепциях оказываются определения вероятностей: в соответствии с частотной концепцией вероятность не является объективным, существующим до опыта, свойством изучаемого явления, а появляется только в связи с проведением опыта или наблюдения; это приводит к смешению теоретических (истинных, обусловленных реальным комплексом условий «существования» исследуемого явления) вероятностных характеристик и их эмпирических (выборочных) аналогов.

Апостериорно-моделъный подход к заданию вероятностей P { w i } , отвечающему конкретно исследуемому реальному комплексу условий, является в настоящее время, пожалуй, наиболее распространенным и наиболее практически удобным. Логика этого подхода следующая. С одной стороны, в рамках априорного подхода, т. е. в рамках теоретического, умозрительного анализа возможных вариантов специфики гипотетичных реальных комплексов условий разработан и исследован набор модельных вероятностных пространств (биномиальное, пуассоновское, нормальное, показательное и т. п.). С другой стороны, исследователь располагает результатами ограниченного ряда случайных экспериментов. Далее, с помощью специальных математико-статистических приемов исследователь как бы прилаживает гипотетичные модели вероятностных пространств к имеющимся у него результатам наблюдения и оставляет для дальнейшего использования лишь ту модель или те модели, которые не противоречат этим результатам и в некотором смысле наилучшим образом им соответствуют.