Какая величина называется бесконечно малой. Примеры. Бесконечно большие функции

Приводится определение бесконечно большой последовательности. Рассмотрены понятия окрестностей бесконечно удаленных точек. Дано универсальное определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам. Рассмотрены примеры применения определения бесконечно большой последовательности.

Содержание

См. также: Определение предела последовательности

Определение

Последовательность { β n } называется бесконечно большой последовательностью , если для любого, сколь угодно большого числа M , существует такое натуральное число N M , зависящее от M , что для всех натуральных n > N M выполняется неравенство
|β n | > M .
В этом случае пишут
.
Или при .
Говорят, что стремится к бесконечности, или сходится к бесконечности .

Если , начиная с некоторого номера N 0 , то
( сходится к плюс бесконечности ).
Если же , то
( сходится к минус бесконечности ).

Запишем эти определения с помощью логических символов существования и всеобщности:
(1) .
(2) .
(3) .

Последовательности с пределами (2) и (3) являются частными случаями бесконечно большой последовательности (1). Из этих определений следует, что если предел последовательности равен плюс или минус бесконечности, то он также равен и бесконечности:
.
Обратное, естественно, не верно. Члены последовательности могут иметь чередующиеся знаки. При этом предел может равняться бесконечности, но без определенного знака.

Заметим также, что если какое-то свойство выполняется для произвольной последовательности с пределом равным бесконечности, то это же свойство выполняется и для последовательности, чей предел равен плюс или минус бесконечности.

Во многих учебниках по математическому анализу, в определении бесконечно большой последовательности указывается, что число M является положительным: M > 0 . Однако это требование является лишним. Если его отменить, то никаких противоречий не возникает. Просто малые или отрицательные значения для нас не представляют никакого интереса. Нас интересует поведение последовательности при сколь угодно больших положительных значениях M . Поэтому, если возникнет необходимость, то M можно ограничить снизу любым, наперед заданным числом a , то есть считать, что M > a .

Когда же мы определяли ε - окрестность конечной точки, то требование ε > 0 является важным. При отрицательных значениях, неравенство вообще не может выполняться.

Окрестности бесконечно удаленных точек

Когда мы рассматривали конечные пределы, то ввели понятие окрестности точки. Напомним, что окрестностью конечной точки является открытый интервал, содержащий эту точку. Также мы можем ввести понятия окрестностей бесконечно удаленных точек.

Пусть M - произвольное число.
Окрестностью точки "бесконечность" , , называется множество .
Окрестностью точки "плюс бесконечность" , , называется множество .
Окрестностью точки "минус бесконечность" , , называется множество .

Строго говоря, окрестностью точки "бесконечность" является множество
(4) ,
где M 1 и M 2 - произвольные положительные числа. Мы будем использовать первое определение, , поскольку оно проще. Хотя, все сказанное ниже, также справедливо и при использовании определения (4).

Теперь мы можем дать единое определение предела последовательности, которое относится как к конечным, так и к бесконечным пределам.

Универсальное определение предела последовательности .
Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любой окрестности этой точки существует такое натуральное число N , что все элементы последовательности с номерами принадлежат этой окрестности.

Таким образом, если предел существует, то за пределами окрестности точки a может находиться только конечное число членов последовательности, или пустое множество. Это условие является необходимым и достаточным. Доказательство этого свойства, точно такое, как для конечных пределов.

Свойство окрестности сходящейся последовательности
Для того, чтобы точка a (конечная или бесконечно удаленная) являлась пределом последовательности , необходимо и достаточно, чтобы за пределами любой окрестности этой точки находилось конечное число членов последовательности или пустое множество.
Доказательство .

Также иногда вводят понятия ε - окрестностей бесконечно удаленных точек.
Напомним, что ε - окрестностью конечной точки a называется множество .
Введем следующее обозначение. Пусть обозначает ε - окрестность точки a . Тогда для конечной точки,
.
Для бесконечно удаленных точек:
;
;
.
Используя понятия ε - окрестностей, можно дать еще одно универсальное определение предела последовательности:

Точка a (конечная или бесконечно удаленная) является пределом последовательности , если для любого положительного числа ε > 0 существует такое натуральное число N ε , зависящее от ε , что для всех номеров n > N ε члены x n принадлежат ε - окрестности точки a :
.

С помощью логических символов существования и всеобщности, это определение запишется так:
.

Примеры бесконечно больших последовательностей

Пример 1


.


.
Выпишем определение бесконечно большой последовательности:
(1) .
В нашем случае
.

Вводим числа и , связав их неравенствами:
.
По свойствам неравенств , если и , то
.
Заметим, что при это неравенство выполняется для любых n . Поэтому можно выбрать и так:
при ;
при .

Итак, для любого можно найти натуральное число , удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что . То есть последовательность является бесконечно большой.

Пример 2

Пользуясь определением бесконечно большой последовательности показать, что
.


(2) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
.

Тогда для любого можно найти натуральное число, удовлетворяющее неравенству , так что для всех ,
.
Это означает, что .


.

Пример 3

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем определение предела последовательности, равному минус бесконечности:
(3) .
Общий член заданной последовательности имеет вид:
.

Вводим числа и :
.
Отсюда видно, что если и , то
.

Поскольку для любого можно найти натуральное число, удовлетворяющее неравенству , то
.

При заданном , в качестве N можно взять любое натуральное число, удовлетворяющее следующему неравенству:
.

Пример 4

Пользуясь определением бесконечно большой последовательности показать, что
.

Выпишем общий член последовательности:
.
Выпишем определение предела последовательности, равному плюс бесконечности:
(2) .

Поскольку n есть натуральное число, n = 1, 2, 3, ... , то
;
;
.

Вводим числа и M , связав их неравенствами:
.
Отсюда видно, что если и , то
.

Итак, для любого числа M можно найти натуральное число, удовлетворяющее неравенству . Тогда для всех ,
.
Это означает, что .

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Сравнение бесконечно малых функций, эквивалентные функции

Бесконечно малые и бесконечно большие величины.

О.1. Последовательность называется бесконечно большой, если для любого положительного числа А (сколь большим бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | х п | › А, т.е. какое бы большое число А мы не взяли, найдется такой номер, начиная с которого все члены последовательности окажутся больше А.

Определение 6 . Последовательность {α п } называется бесконечно малой, если для любого положительного числа ε (сколь малым бы мы его не взяли) существует номер N такой, что при n›N выполняется неравенство | α п | ‹ε.

1. Последовательность {п} является бесконечно большой.

2. Последовательность {} является бесконечно малой.

Теорема 1. Если {х п } - бесконечно большая последовательность и все ее члены отличны от нуля, х п ≠0, то последовательность {α п }=- бесконечно малая, и, обратно, если {α п } бесконечно малая последовательность, α п ≠0, то последовательность {х п }=бесконечно большая.

Сформулируем основные свойства бесконечно малых последовательностей в виде теорем.

Теорема 2. Сумма и разность двух бесконечно малых последовательностей есть бесконечно малые последовательности.

Пример 2. Последовательность с общим членом бесконечно малая, т.к. т.е заданная последовательность является суммой бесконечно малых последовательностей и и поэтому является бесконечно малой.

Следствие. Алгебраическая сумма любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Теорема 3. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Следствие. Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Замечание. Частное двух бесконечно малых последовательностей может быть любой последовательностью и может не иметь смысла.

Например, если , , то все элементы последовательности равны 1 и данная последовательность является ограниченной. Если , , то последовательность - бесконечно большая, и наоборот, если , а , то - бесконечно малая последовательность. Если начиная с некоторого номера элементы последовательности равны нулю, то последовательность не имеет смысла.

Теорема 4. Произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность.

Пример 3. Последовательность бесконечно малая, т.к. и последовательность {}- бесконечно малая, последовательность - ограничена, т.к. ‹ 1. Следовательно, - бесконечно малая последовательность.

Следствие. Произведение бесконечно малой последовательности на число есть бесконечно малая последовательность.

Определение. Функция f(x) называется бесконечно большой при , если для любого, даже сколь угодно большого положительного числа , найдется такое положительное число (зависящее от М, δ=δ(М)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Записывают: или при .

Например, функция есть бесконечно большая функция при ; функция при .

Если f(x) стремится к бесконечности при и принимает лишь положительные значения, то пишут , если лишь отрицательные значения, то .

Определение. Функция f(x), заданная на всей числовой прямой, называется бесконечно большой при , если для любого положительного числа , найдется такое положительное число (зависящее от М, N=N(М)), что при всех х, удовлетворяющих условию , выполняется неравенство

Например, функция у=2 х есть бесконечно большая функция при ; функция является бесконечно большой функцией при .

Свойства бесконечно больших функций:

1. Произведение б.б.ф. на функцию, предел которой отличен от нуля, есть б.б.ф.

2. Сумма б.б.ф. и ограниченной функции есть б.б.ф.

3. Частное от деления б.б.ф. на функцию, имеющую предел, есть б.б.ф.

Например, если функция f(x)=tgx есть б.б.ф. при , функция φ(х)=4х-3 при имеет предел (2π-3) отличный от нуля, а функция ψ(х)=sinx – ограниченная функция, то

f(x) φ(х)=(4х-3) tgx; f(x) + ψ(х)= tgx + sinx; есть бесконечно большие функции при .

Определение. Функция f(x) называется бесконечно малой при , если

По определению предела функции равенство (1) означает: для любого, даже сколь угодно малого положительного числа , найдется такое положительное число (зависящее от ε, δ=δ(ε)), что для всех х, не равных х 0 и удовлетворяющих условию , выполняется неравенство

Теорема. Для выполнения равенства необходимо и достаточно, чтобы функция была бесконечно малой при . При этом функция может быть представлена в виде .

Аналогично определяется б.м.ф. при ,- 0, , во всех случаях f(x)0.

Бесконечно малые функции часто называют бесконечно малыми величинами или бесконечно малыми; обозначают обычно греческими буквами α, β и т.д.

Например, у=х 2 при х→0; у=х-2 при х→2; у=sinx при х→πк, - бесконечно малые функции.

Свойства бесконечно малых функций:

1. Сумма конечного числа бесконечно малых функций есть величина бесконечно малая;

2. Произведение конечного числа бесконечно малых функций, а также бесконечно малой функции на ограниченную функция, есть величина бесконечно малая;

3. Частное от деления бесконечно малой функции на функцию, предел которой не равен нолю, если величина бесконечно малая.

Рассмотрим последнее свойство при если функции и являются бесконечно малыми (Сравнение бесконечно малых функций):

1). Если , то называется бесконечно малой, более высокого порядка малости, чем .

Пример . При х→2 функция (х - 2) 3 бесконечно малая более высокого порядка, чем (х -2), так как .

2). Если , то и называются бесконечно малыми одного порядка (имеют одинаковую скорость стремления к нолю);

Пример . При х→0 функции 5х 2 и х 2 являются бесконечно малыми одного порядка, так как .

3). Если ,то и называются эквивалентными бесконечно малыми, обозначаются ~., то

Связь между бесконечно малыми и бесконечно большими функциями: функция обратная бесконечно малой является бесконечно большой (и наоборот), т.е. если - бесконечно малая функция, то - бесконечно большая.

Единственность предела и ограниченность сходящейся числовой последовательности

Определение 1 . Числовая последовательность (1) называется ограниченной, если множество членов этой последовательности образует ограниченное множество.

В этом случае числовую последовательность (1) мы будем называть ограниченной величиной .

Определение 2 . Числовая последовательность (1) сходится и имеет предел (Возможно использование записи ), если .

Давайте повторим это определение, используя в большей степени русский язык. Предел числовой последовательности существует и равен некоторому числу, если, начиная с некоторого номера, все члены последовательности удалены от этого предельного числа менее, чем любое, наперед заданное, сколь угодно малое положительное число. Можно это же самое сказать другими словами. Число будет пределом числовой последовательности (1) тогда и только тогда, когда для каждой -окрестности точки все члены последовательности, начиная с некоторого номера, лежат в этой –окрестности. Заметим, что интервал называется -окрестностью точки .

Теорема 1 . Если предел числовой последовательности существует, то он единственный.

Доказательство . Доказательство теоремы проведем «методом от противного». Предположим, что теорема неверна и существует, как минимум, 2 числа и (), для которых выполнены условия определения 2. В этом определении возьмем . Тогда, после номера члены последовательности отличаются от числа меньше чем на , а после номера члены последовательности отличаются от числа меньше чем на . Покажем, что этого не может быть. В самом деле, при выполнены соотношения , , откуда для этих имеем . Теорема доказана.

Теорема 2 . Если числовая последовательность имеет предел, то эта числовая последовательность ограничена.

Доказательство . Доказательство будет носить конструктивный характер. Возьмем и найдем соответствующее . Разобьем последовательность на 2 части: первые членов и остальные члены последовательности. Первая группа состоит из конечного числа членов и поэтому ограничена. Вторая группа состоит из чисел, удаленных от предельного значения не больше чем на 1, и поэтому также ограничена. Объединение двух ограниченных множеств есть множество ограниченное. Теорема доказана.



Бесконечно малые величины и их свойства

Определение 3 . Числовая последовательность называется бесконечно малой величиной , если она имеет предел, равный 0.

Для бесконечно малых величин используются обозначение б. м .

Пусть заданы числовые последовательности и . Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей. Числовая последовательность с общим членом , называется суммой этих числовых последовательностей.

Теорема 3 . Сумма конечного числа бесконечно малых величин есть величина бесконечно малая.

Доказательство . Достаточно доказать утверждение для суммы двух б. м. Пусть числовые последовательности и являются бесконечно малыми величинами, т. е. пределы этих последовательностей равны 0. Данный факт означает следующее. Если задано произвольное, скроль угодно малое положительное число , то для числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . По той же причине для этого же числа и числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . Возьмем число , тогда при справедливы соотношения . Итак, для произвольного мы нашли номер , такой что при выполнено . Следовательно, предел последовательности , равен 0, и она является бесконечно малой величиной. Теорема доказана.

Теорема 4 . Произведение бесконечно малой величины на ограниченную величину есть величина бесконечно малая.

Доказательство . Пусть числовая последовательность является бесконечно малой величиной, а числовая последовательность является ограниченной величиной. Это означает что, с одной стороны, , с другой стороны, существует число такое, что для каждого выполнено условие . Пусть теперь задано произвольное, скроль угодно малое положительное число . Рассмотрим числа , для него в числовой последовательности существует номер , обладающий тем свойством, что при выполнено соотношение . При этом будет выполнено условие , что и означает, что произведение этих двух величин – бесконечно малой и ограниченной есть величина бесконечно малая. Теорема доказана.

Свойства пределов

А как конкретно происходит вычисление пределов, в данном случае числовых последовательностей? Мы стараемся представить величину, предел которой надо найти, в виде суммы, разности, произведения, частного более простых величин, предел которых легко найти. Для обоснования такого подхода надо сформулировать и доказать свойства пределов.

Теорема 5 . Числовая последовательность имеет предел, равный тогда и только тогда, когда последовательность , является бесконечно малой величиной.

Доказательство . Пусть , т.е. при для каждого при выполнено неравенство (). Но это неравенство равносильно тому, что , т. е. последовательность , имеет предел 0, т.е. является бесконечно малой величиной. Теорема доказана. , где - б. м. Отсюда следует, что . В последней скобке сумма двух бесконечно малых величин есть величина б. м. Поэтому представляется в виде суммы и бесконечно малой величины . В силу теоремы 5 это означает, что . Первое утверждение теоремы доказана. Формула доказывается совершенно аналогично. Рассмотрим теперь формулу и используем для преобразования левой части те же обозначения. Поэтому …

Приводится определение бесконечно малой последовательности. Она обладает свойствами сходящихся последовательностей. Также имеются свойства, характерные только для последовательностей с пределом равным нулю. Приводятся доказательства таких свойств. Рассмотрен пример, в котором нужно доказать, что последовательность бесконечно малая.

Содержание

Определение

Бесконечно малая последовательность { α n } - это сходящаяся последовательность, предел которой равен нулю:
.

Следующие свойства являются прямым следствием арифметических свойств , примененных к последовательностям, предел которых равен нулю.

Свойство суммы и разности бесконечно малых последовательностей

Сумма и разность конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Также линейная комбинация конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Доказательство предела суммы и разности числовых последовательностей .

Свойство произведения бесконечно малых последовательностей

Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.
Доказательство предела произведения числовых последовательностей .

Следующие свойства относятся только к бесконечно малым последовательностям и не являются прямым следствием свойств сходящихся последовательностей.


{ x n }
x n = b + α n ,
где { α n }

Доказательства свойств

Свойство произведения ограниченной последовательности на бесконечно малую

Произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Доказательство

Пусть последовательность ограничена некоторым числом :
(3.1) .

Пусть последовательность - бесконечно малая. То есть имеется такая функция , зависящая от переменной , что для любого положительного значения переменной , выполняется неравенство
(3.2) при .

Пусть последовательность является произведением последовательностей и . Ее общий член имеет вид:
.
Нам нужно найти такую функцию , при которой выполняется неравенство
(3.3) при .

Применим (3.1) и (3.2):
.
Это выполняется при . Итак,
.
Положим :
.

То есть мы нашли такую функцию , при которой, для любого положительного числа , выполняется неравенство:
(3.3) при .

Свойство доказано.

Свойство представления сходящейся последовательности через бесконечно малую

Для того, чтобы последовательность { x n } имела предел b , необходимо и достаточно, чтобы
x n = b + α n ,
где { α n } - бесконечно малая последовательность.

Доказательство

Необходимость . Пусть . Рассмотрим последовательность с общим членом . Используем арифметические свойства пределов :
.
То есть - бесконечно малая последовательность.

Достаточность . Пусть . На основании арифметических свойств пределов имеем:
.

Свойство доказано.

Пример

Все примеры Используя определение предела последовательности доказать, что последовательность

является бесконечно малой.

Выпишем определение бесконечно малой последовательности:
.
Поскольку n является натуральным числом, n = 1, 2, 3, ... , то
,
,
.
Поэтому члены последовательности являются положительными числами. Тогда
.

Итак, мы получили следующую оценку:
.
Вводим положительные числа и :
.
Согласно свойствам неравенств , если и , то
.

Отсюда следует, что для любого положительного можно найти натуральное число , так что при ,
.
Это означает, что предел исходной последовательности равен нулю и, следовательно, она является бесконечно малой.

Теорема 2.4. Если последовательности {x n } и {y n } сходятся и при этом x n ≤ y n , n > n 0 , то lim x n ≤ lim y n .

Пусть lim xn = a,

lim yn = b и a > b. По определению 2.4 предела

последовательности по числу ε =

найдется номер N такой, что

Следовательно, n > max{n0 , N} yn <

< xn , что противоречит

условию.

Замечание. Если последовательности {xn }, {yn } сходятся и для

всех n > n0

xn < yn , то можно утверждать лишь, что lim xn

≤ lim yn .

Чтобы убедиться в этом, достаточно рассмотреть последовательности

и yn =

Непосредственно из определения 2.4 следуют и такие результаты.

Теорема 2.5. Если числовая последовательность {x n } сходится и lim x n < b (b R), то N N: x n < b, n > N .

Cледствие. Если последовательность {xn } сходится и lim xn 6= 0, то

N N: sgn xn = sgn(lim xn ), n > N.

Теорема 2.6. Пусть последовательности {x n }, {y n }, {z n } удовлетворяют условиям:

1) x n ≤ yn ≤ zn , n > n0 ,

2) последовательности {x n } и {z n } сходятся и lim x n = lim z n = a.

Тогда последовательность {y n } сходится и lim y n = a.

2.1.3 Бесконечно малые последовательности

Определение 2.7. Числовая последовательность {x n } называется бесконечно малой (коротко б.м.), если она сходится и lim x n = 0.

Согласно определению 2.4 предела числовой последовательности, определение 2.7 эквивалентно следующему:

Определение 2.8. Числовая последовательность {x n } называется бесконечно малой, если для любого положительного числа ε найдется номер N = N(ε) такой, что при всех n > N элементы x n этой последовательности удовлетворяют неравенству |x n | < ε.

Итак, {xn } - б.м. ε > 0 N = N(ε) : n > N |xn | < ε.

Из примеров 2, 3 и замечания 1 к теореме 2.3 получаем, что после-

довательности (

q −n

являются бесконечно

Свойства бесконечно малых последовательностей описываются следующими теоремами.

Теорема 2.7. Сумма конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Пусть последовательности {xn }, {yn } - бесконечно малые. Покажем, что таковой будет и {xn + yn }. Зададим ε > 0. Тогда найдется номер

N1 = N1 (ε) такой, что

|xn | <

N > N1 ,

и найдется номер N2 = N2 (ε) такой, что

|yn | <

N > N2 .

Обозначим через N = max{N1 , N2 }. При n > N будут справедливы неравенства (2.1) и (2.2) . Поэтому при n > N

|xn + yn | ≤ |xn | + |yn | < 2 + 2 = ε.

Это означает, что последовательность {xn +yn } - бесконечно малая. Утверждение о сумме конечного числа бесконечно малых последо-

вательностей следует из доказанного по индукции.

Теорема 2.8. Произведение бесконечно малой последовательности на ограниченную последовательность есть бесконечно малая.

Пусть {xn } - ограниченная и {yn } - бесконечно малая последовательности. По определению 2.6 ограниченной последовательности найдется число M > 0 такое, что

|xn | ≤ M, n N.

Зафиксируем произвольное число ε > 0. Так как {yn } - бесконечно малая последовательность, то найдется номер N = N(ε) такой, что

Поэтому последовательность {xn · yn } является бесконечно малой.

Cледствие 1. Произведение бесконечно малой последовательности на сходящуюся есть бесконечно малая последовательность.

Cледствие 2. Произведение двух бесконечно малых последовательностей есть бесконечно малая последовательность.

Пользуясь бесконечно малыми последовательностями, на определение сходящейся последовательности можно посмотреть по-другому.

Лемма 2.1. Для того чтобы число a являлось пределом числовой последовательности {x n } , необходимо и достаточно, чтобы имело место представление x n = a + α n , n N, в котором {α n } - бесконечно малая последовательность.

Необходимость. Пусть lim xn = a и a R. Тогда

ε > 0 N = N(ε) N: n > N |xn − a| < ε.

Если положить αn = xn − a, n N, то получим, что {αn } - бесконечно малая последовательность и xn = a + αn , n N.

Достаточность. Пусть последовательность {xn } такова, что существует число a, для которого xn = a + αn , n N, и lim αn = 0. Зафиксируем произвольное положительное число ε. Так как lim αn = 0, то найдется номер N = N(ε) N такой, что |αn | < ε, n > N. То есть, в других обозначениях, n > N |xn − a| < ε. Это означает, что lim xn = a.

Применим лемму 2.1 к одному важному частному примеру.

Лемма 2.2. lim n n = 1.

√ √

Так как для всех n > 1 n n > 1, то n n = 1 + αn , причем αn > 0 для

всех n > 1. Поэтому n = (1 + α

)n = 1 + nα

+ αn .

Поскольку все слагаемые положительны, n

Пусть ε > 0. Так как

2/n < ε для всех n > 2/ε , то, полагая

N = max{1, }, получим, что 0 < αn < ε, n > N. Следовательно,

последовательность {αn } является бесконечно малой и, согласно лемме

2.1, lim n n = 1. √

Cледствие. Если a > 1, то lim n a = 1.√ √

Утверждение следует из неравенств 1 < n a ≤ n n , n > [a].

2.1.4 Арифметические операции с последовательностями

Пользуясь леммой 2.1 и свойствами бесконечно малых последовательностей, легко получить теоремы о пределах последовательностей, получаемых с помощью арифметических операций из сходящихся последовательностей.

|b| 3|b|

2 < |y n | < 2

Теорема 2.9. Пусть числовые последовательности {x n } и {y n } сходятся. Тогда имеют место утверждения:

1) последовательность {x n ± y n } сходится и

lim(xn ± yn ) = lim xn ± lim yn ;

2) последовательность {x n · y n } сходится и

lim(xn · yn ) = lim xn · lim yn ;

3) если lim y n 6= 0, то отношение x n /y n определено, начиная с

некоторого номера, последовательность { x n } сходится и

По теореме 2.8 и следствию 1 последовательности {a · βn }, {b · αn }, {αn · βn } являются бесконечно малыми. По теореме 2.7 последовательность {aβn + bαn + αn βn } бесконечно мала. Из представления (2.5) по лемме 2.1 и следует утверждение 2).

Обратимся к утверждению 3). По условию lim yn = b 6= 0. В силу теоремы 2.3. последовательность {|yn |} сходится и lim |yn | = |b| 6= 0. Поэтому по числу ε = |b|/2 найдется номер N такой, что n > N

0 < | 2 b| = |b| −

Следовательно, yn =6 0, и 3|b| < y n < |b| , n > N.

Таким образом, частное xn /yn определено для всех n > N, а последовательность {1/yn } ограничена. Рассмотрим для всех n > N разность

(αn b − aβn ).

Последовательность

αn b

aβn

Бесконечно малая,

ограниченные. По теореме 2.8 последовательность

− b

нечно малая. Поэтому, в силу леммы 2.1, утверждение 3) доказано. Cледствие 1. Если последовательность {xn } сходится, то для лю-

бого числа c последовательность {c · xn } сходится и lim(cxn ) = c · lim xn .