Математическая модель конфликтной ситуации называется. Математические моделиконфликтных ситуаций. Основные понятия теории игр

На практике часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределенности, т.е. возникают ситуации, в которых две стороны преследуют различные цели и результаты действия каждой из сторон зависят от мероприятий противника (или партнера).

Ситуация, в которой эффективность принимаемого одной стороной решения зависит от действий другой стороны, называется конфликтной . Конфликт всегда связан с определенного рода разногласиями (это не обязательно антагонистическое противоречие).

Конфликтная ситуация называется антагонистической , если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину, и наоборот.

В экономике конфликтные ситуации встречаются очень часто и имеют многообразный характер. Например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Каждый из них имеет свои интересы и стремится принимать оптимальные решения, помогающие достигнуть поставленных целей в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнера и учитывать решения, которые эти партнеры будут принимать (они заранее могут быть неизвестны). Чтобы в конфликтных ситуациях принимать оптимальные решения, создана математическая теория конфликтных ситуаций, которая называется теорией игр . Возникновение этой теории относится к 1944 г., когда была издана монография Дж. фон Неймана «Теория игр и экономическое поведение»

Игра - это математическая модель реальной конфликтной ситуации . Стороны, участвующие в конфликте, называются игроками. Исход конфликта называется выигрышем. Правила игры - это система условий, определяющая варианты действий игроков; объем информации каждого игрока о поведении партнеров; выигрыш, к которому приводит каждая совокупность действий.

Игра называется парной , если в ней участвуют два игрока, и множественной , если число игроков больше двух. Мы будем рассматривать только парные игры. Игроки обозначаются A и B .

Игра называется антагонистической (с нулевой суммой ), если выигрыш одного из игроков равен проигрышу другого.

Выбор и осуществление одного из вариантов действий, предусмотренных правилами, называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход - это сознательный выбор игроком одного из вариантов действий (например, в шахматах).

Случайный ход - это случайно выбранное действие (например, бросание игральной кости). Мы будем рассматривать только личные ходы.

Стратегия игрока - это совокупность правил, определяющих поведение игрока при каждом личном ходе. Обычно в процессе игры на каждом этапе игрок выбирает ход в зависимости от конкретной ситуации. Возможно также, что все решения приняты игроком заранее (т.е. игрок выбрал определенную стратегию).

Игра называется конечной , если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае.

Цель теории игр - разработать методы для определения оптимальной стратегии каждого игрока.

Стратегия игрока называется оптимальной , если она обеспечивает этому игроку при многократном повторении игры максимально возможный средний выигрыш (или минимально возможный средний проигрыш независимо от поведения противника).

Раздел Теория игр представлен тремя онлайн-калькуляторами :

  • 1. Решение матричной игры . В таких задачах задана платежная матрица. Требуется найти чистые или смешанные стратегии игроков и, цену игры . Для решения необходимо указать размерность матрицы и метод решения.
  • 2. Биматричная игра . Обычно в такой игре задают две матрицы одинакового размера выигрышей первого и второго игроков. Строки этих матриц соответствуют стратегиям первого игрока, а столбцы матриц - стратегиям второго игрока. При этом в первой матрице представлены выигрыши первого игрока, а во второй матрице - выигрыши второго.
  • 3. Игры с природой . Используется, когда необходимо выбрать управленческое решение по критериям Максимакса, Байеса, Лапласа, Вальда , Сэвиджа , Гурвица .

Пример 1. Каждый из игроков, A или B , может записать, независимо от другого, цифры 1, 2 и 3. Если разность между цифрами, записанными игроками, положительна, то A выигрывает количество очков, равное разности между цифрами. Если разность меньше 0, выигрывает B . Если разность равна 0 - ничья.

У игрока A три стратегии (варианта действия): A1= 1 (записать 1), A2= 2, A3= 3, у игрока тоже три стратегии: B1, B2, B3.

B A

Задача игрока A - максимизировать свой выигрыш. Задача игрока B - минимизировать свой проигрыш, т.е. минимизировать выигрыш A . Это парная Основные понятия теории игр

В экономической практике часто имеют место конфликтные ситуации. Игровые модели - это, в основном, упрощенные математические модели конфликтов. В отличие от реального конфликта игра ведётся по четким правилам. Для моделирования конфликтных ситуаций разработан специальный аппарат - математическая теория игр. Стороны, участвующие в конфликте, называются игроками.

Каждая формализованная игра (модель) характеризуется:

  • 1. количеством субъектов - игроков, участвующих в конфликте;
  • 2. вариантом действий для каждого из игроков, называемых стратегиями;
  • 3. функциями выигрыша или проигрыша (платежа) исхода конфликта;

Игра, в которой участвуют два игрока A и B называется парной. Если же количество игроков больше двух, то это игра множественная. Мы будем рассматривать модели только парных игр.

Игра, в которой выигрыш одного из игроков точно равен проигрышу другого, называется антагонистической игрой или игрой с нулевой суммой. С рассмотрения моделей антагонистических игр мы и начнём.

Смоделировать (решить) антагонистическую игру - значит, для каждого игрока указать стратегии, удовлетворяющие условию оптимальности , т.е. игрок A должен получить максимальный гарантированный выигрыш, какой бы своей стратегии не придерживался игрок B, а игрок B должен получить минимальный проигрыш, какой бы своей стратегии не придерживался игрок A. Оптимальные стратегии характеризуются устойчивостью, то есть ни одному из игроков не выгодно отклоняться от своей оптимальной стратегии.

Примечание. Различают игры кооперативные и некооперативные, с полной информацией и не полной. В игре с полной информацией перед каждым ходом каждый игрок знает все возможные ходы (стратегии поведения) и выигрыши. В кооперативных играх допускается возможность предварительных переговоров между игроками. Мы будем рассматривать некооперативные игры с полной информацией.

Математическая теория игр является разделом математики, изучающей принятие решений в конфликтных ситуациях.

Определим основные понятия теории игр.

Игра - упрощенная формализованная модель конфликтной ситуации. Игрок - одна из сторон в игровой ситуации. В зависимости от постановки задачи, стороной может выступать коллектив или даже целое государство. Каждый игрок может иметь свои стратегии. Стратегией i-го игрока x2 называется одно из возможных решений из множества допустимых решений этого игрока.

По количеству стратегий игры делятся на конечные , в которых число стратегий ограничено, и бесконечные , которые имеют бесконечно много различных стратегий.

Каждый из n участников игры может выбирать свою стратегию. Совокупность стратегий x=x1,x2,…,xn, которые выбрали участники игры, называется игровой ситуацией .

Оценить ситуацию x с точки зрения преследуемых ЛПР целей можно, построив целевые функции (или критерии качества), ставящие в соответствие каждой ситуации x числовые оценки f1(x),f2(x),…,fn(x) (например, доходы фирм в ситуации x или их затраты и т. д.).

Тогда цель i- го ЛПР формализуется следующим образом: выбрать такое свое решение xi, чтобы в ситуации x=x1,x2,…,xn число fi(x) было как можно большим (или меньшим). Однако достижение этой цели от него зависит лишь частично, поскольку другие участники игры влияют на общую ситуацию x с целью достижения своих собственных целей (оптимизируют свои целевые функции). Значение целевой функции в той или иной игровой ситуации можно назвать выигрышем игрока в этой ситуации.
По характеру выигрышей игры можно разделить на игры с нулевой и ненулевой суммой. В играх с нулевой суммой сумма выигрышей в каждой игровой ситуации равна нулю. Игры двух игроков с нулевой суммой называются антагонистическими. В этих играх выигрыш одного игрока равен проигрышу другого.

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры.

По виду функции выигрышей игры можно разделить на матричные, биматричные, непрерывные, сепарабельные и т. д.

Матричными играми называются конечные игры двух игроков с нулевой суммой. В этом случае номер строки матрицы соответствует номеру стратегии Ai игрока 1, а номер столбца - номеру стратегии Bj игрока 2.

Элементами матрицы aij является выигрыш игрока 1 для ситуации (реализации стратегий) AiBj. В силу того, что рассматривается матричная игра с нулевой суммой, выигрыш игрока 1 равен проигрышу игрока 2.

Можно показать, что всякая матричная игра с известной матрицей платежей сводится к решению задачи линейного программирования.

Поскольку в прикладных задачах экономики и управления ситуации, сводящиеся к матричным играм, встречаются не очень часто, мы не будем останавливаться на решении этих задач.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации AiBj каждый из игроков имеет свой выигрыш aij для первого игрока и bij- для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. Анализу этой проблемы посвящена тема 6 настоящего учебного пособия.

По степени неполноты информации, которой обладают ЛПР, игры делятся на стратегические и статистические.

Стратегические игры - это игры в условиях полной неопределенности.

Статистические игры - это игры с частичной неопределенностью. В статистической игре всегда имеется один активный игрок, имеющий свои стратегии и цели. Другим игроком (пассивным, не преследующим своих целей) является природа. Этот игрок реализует свои стратегии (состояния природы) случайным образом, причем вероятность реализации того или иного состояния можно оценить с помощью статистического эксперимента.

Поскольку с теорией статистических игр тесно связана теория принятия экономических решений, то в дальнейшем мы ограничимся рассмотрением только этого класса игр.

Теория игр представляет собой набор математических инструментов для построения моделей, а в социально-экономических приложениях является неиссякаемым источником гибких концепций.

Игра является математической моделью коллективного поведения, отображающей взаимодействие участников-игро- ков в стремлении добиться лучшего исхода, причем их интересы могут быть различны. Несовпадение, антагонизм интересов порождают конфликт, а совпадение интересов приводит к кооперации. Часто интересы в социально-экономических ситуациях не являются ни строго антагонистическими, ни точно совпадающими. Продавец и покупатель согласны, что в их общих интересах договориться о продаже, конечно, при условии, что сделка выгодна обоим. Они энергично торгуются при выборе взаимовыгодной цены в пределах ограничений. Теория игр позволяет выработать оптимальные правила поведения в конфликтах.

Возможность конфликтов заложена в существе самой человеческой жизни. Причины конфликтов коренятся в аномалиях общественной жизни и несовершенстве самого человека. Среди причин, порождающих конфликты, следует назвать прежде всего социально-экономические, политические и нравственные причины. Они являются питательной средой для возникновения различного рода конфликтов. На возникновение конфликтов оказывают влияние психофизические и биологические особенности людей.

Во всех сферах человеческой деятельности при решении самых разнообразных задач в быту, на работе или отдыхе приходится наблюдать различные но своему содержанию и силе проявления конфликты. Об этом ежедневно пишут газеты, передают по радио, транслирует телевидение. Они занимают значительное место в жизни каждого человека, причем последствия некоторых конфликтов бывают слишком ощутимы даже на протяжении многих лет жизни. Они могут съедать жизненную энергию одного человека или группы людей в течение нескольких дней, недель, месяцев или даже лет. Бывает так, правда, к сожалению, редко, что разрешение одних конфликтов проходит весьма корректно и профессионально, грамотно, а других, что бывает значительно чаще - непрофессионально, безграмотно, с плохими исходами иногда для всех участников конфликта, где нет победителей, а есть только побежденные. Очевидно, необходимы рекомендации по рациональному образу действий в конфликтных ситуациях.

Причем чаще часть конфликтов являются надуманными, искусственно раздутыми, созданными для прикрытия профессиональной некомпетентности некоторыми лицами и вредны в коммерческой деятельности.

Другие же конфликты, являясь неизбежным спутником жизни любого коллектива, могут быть весьма полезны и служат импульсом для развития коммерческой деятельности в лучшую сторону.

Конфликты в настоящее время являются ключевой проблемой жизни как отдельных личностей, так и целых коллективов.

Действия литературных персонажей, героев неизбежно сопровождаются проявлением, развитием какого-либо жизненного конфликта, который так или иначе разрешается иногда мирно, иногда драматически или трагически, например на дуэли. Лучшими источниками наших знаний о человеческих конфликтах являются классические трагедии, серьезные и глубокие романы, их экранизация или театральная постановка.

Деятельности человека могут противостоять в конфликте интересы других людей или стихийные силы природы. В одних конфликтах противоположной стороной выступает сознательно и целенаправленно действующий активный противник, заинтересованный в нашем поражении, сознательно препятствует успеху, старается сделать все от него зависящее, чтобы добиться своей победы любыми средствами, например с помощью киллера.

В других конфликтах такого сознательного противника нет, а действуют лишь «слепые силы природы»: погодные условия, состояние торгового оборудования на предприятии, болезни сотрудников и т.н. В таких случаях природа не злонамеренна и выступает пассивно, причем иногда во вред человеку, а иногда к его выгоде, однако ее состояние и проявление могут ощутимо влиять на результат коммерческой деятельности.

Движущей силой в конфликте является любопытство человека, стремление победить, сохранить или улучшить свое положение, например безопасность, устойчивость в коллективе, или надежда на успех достижения поставленной в явном или неявном виде цели.

Как поступить в той или иной ситуации, часто бывает неясно. Характерной особенностью любого конфликта является то, что ни одна из участвующих сторон не знает заранее точно и полностью всех своих возможных решений, а также и другие стороны, их будущее поведение, и, следовательно, каждый вынужден действовать в условиях неопределенности.

Неопределенность исхода может быть обусловлена как сознательными действиями активных противников, так и несознательными, пассивными проявлениями, например стихийных сил природы: дождя, солнца, ветра, лавины и т.п. В таких случаях исключается возможность точного предсказания исхода.

Общность всех конфликтов независимо от их природы заключается в столкновении интересов, стремлений, целей, путей достижения целей, отсутствии согласия двух или более сторон - участников конфликта. Сложность конфликтов обусловливается разумными и расчетливыми действиями отдельных лиц или коллективов с различными интересами.

Неопределенность исхода конфликта, любопытство, интерес и стремление к победе побуждают людей к сознательному вступлению в конфликт, что притягивает к конфликтам и участников, и наблюдателей.

Математическая теория игр дает научно обоснованные рекомендации поведения в конфликтных ситуациях, показывая, «как играть, чтобы не проиграть». Для применения этой теории необходимо уметь представлять конфликты в виде игр.

Основой любого конфликта является наличие противоречия, которое принимает форму разногласия. Конфликт можно определить как отсутствие согласия между двумя или более сторонами - лицами или группами, проявляющееся при попытке разрешить противоречие, причем часто на фоне острых отрицательных эмоциональных переживаний, хотя известно, по определению В. Гюго, что «из двух ссорящихся виноват тот, кто умнее».

Следует заметить, что вовлечение в конфликт большого числа людей позволяет резко увеличить множество альтернатив и исходов , что является важной позитивной функцией конфликта, связанной с расширением кругозора, увеличением количества альтернатив и соответственно возможных исходов.

В процессе коммерческих переговоров приходится искать область взаимных интересов (рис. 3.4), в которой находится компромиссное решение. Делая большие уступки по менее значимым аспектам для фирмы, но более значимым для оппонента, коммерсант получает больше по другим позициям, которые более значимы и выгодны для фирмы. Эти уступки имеют минимальные и максимальные границы интересов. Это условие получило название принцип Парето по имени итальянского ученого В. Парето.

Для современных условий рыночных отношений характерны ситуации, аналогичные кооперативным играм с двумя игроками, ведущими поиск удачного соглашения, например, при покупке-продаже квартиры, автомобиля и т.п. В таких случаях исходы взаимодействия участников можно представить как множество решений S на плоскости (см. рис. 3.4) среди общих выигрышей X и У. Это множество является выпуклым, замкнутым, ограниченным сверху, а оптимальные решения находятся на правой верхней северо-восточной границе. На этой границе выделяется между Р и Р 2 множество оптимальных решений по Парето (Р), на котором увеличение выигрыша партнера возможно только за счет уменьшения выигрыша другого партнера. Точка угрозы Т (х т, у т) определяет величины выигрышей, которые могут получить игроки, не вступая в коалицию друг с другом. На множестве (Р) выделено F x и Р 2 , переговорное множество F, в пределах которо-

Рис . ЗА

го имеет смысл вести переговоры, где выделяется точка N, соответствующая равновесию по Нэшу, - точка Нэша , в ней достигается максимум произведения тах(й Л. - x m)(h y - у т), в котором сомножители представляют собой превышения выигрышей каждого из игроков над платежами, которые могут быть получены без операции. Точка Нэша является наиболее привлекательным ориентиром в поиске оптимального решения.

Одним из типичных социально-психологических межличностных конфликтов является несбалансированное ролевое взаимодействие. Теоретическую основу анализа межличностных конфликтов предложил американский психолог Э. Бёрн, который представил описание ролевого взаимодействия партнеров (рис. 3.5, а - нет конфликта, б - возможен конфликт) в виде сетевых моделей.

Рис . 35

Каждый человек в процессе взаимодействия с окружающими вынужден играть более десятка ролей, причем далеко не всегда успешно. В предлагаемой модели каждый партнер может имитировать роль С - старшего, Р - равного или М - младшего. Если ролевое взаимодействие сбалансировано, то общение может развиваться бесконфликтно, иначе при разбалансе ролей возможен конфликт.

В длительных конфликтах часто доля делового содержания с течением времени уменьшается и начинает доминировать личностная сфера, что и представлено на рис. 3.6.

Конфликт представляет собой процесс, развивающийся во времени (рис. 3.7), который можно разделить на несколько периодов, т.е. представить в виде динамических моделей развития конфликта. Таковыми, например, могут быть предконф- ликтный период (/„), конфликтное взаимодействие (?/ е) и по- слеконфликтный период (t c).

Напряженность с течением времени в предконфликтный период (? 0 ~ t) постепенно (1) или лавинообразно (2) пара-


Рис. 3.6

стает, а затем достигает наибольшего значения в момент кульминации? 2 и затем спадает. Следует заметить, что зачастую конфликтное взаимодействие имеет продолжительность (?3 - 1 1) всего около 1 мин, а послеконфликтный период может быть больше его в 600-2000 и более раз. Причем показатели исхода конфликта для обеих сторон могут совсем не содержать выигрышных показателей, т.е. одни ущербы.

Оценку состояния партнера во взаимодействии можно интерпретировать графически в виде сочетания степени его активности А и уровня настроения (рис. 3.8).

Измерение этих показателей можно производить от среднего, нейтрального (0) уровня. Тогда точка состояния определяется вектором с соответствующими координатами, например М(х, 1 ) 2 ). Состояние, определяемое другим вектором N(pci, У[) у отличается меньшей активностью у = (z/ 2 - У ) Состояние партнера, определяемое вектором А(х 3, г/ 2), отличается более скверным настроением, чем состояние, определяемое вектором В(х 2 , у 2).


Рис. 3.7


Рис. 3.8

На рис. 3.9 представлена модель взаимодействия партнеров, состояния которых зафиксированы векторами А и В , по которым можно построить результирующий конфликт-вектор Е. Эта зона готовности к конфликту из всех квадрантов является самой неблагоприятной. Пользуясь такими графическими моделями оценки состояния партнеров, можно заранее подготовиться к возможным исходам их взаимодействия.

Игровую модель конфликта можно представить как сочетание отображения (рис. 3.10) возможных позитивных и негативных альтернатив (ходов) участников-игроков К и П и вариантов исходов для каждой пары ходов К, П в виде платежной матрицы В = || И, элемент которой можно определить по формуле


Рис. 3.9


Рис. 3.10

где Буги М* - соответственно оценка характеристики исхода конфликта в баллах и ее вес, k = 1 у т.

На рис. 3.10 показано, что действия обеих сторон с негативными альтернативами (-/-) свидетельствуют о том, что с помощью «войн» понять друг друга нельзя. Позитивные действия с обеих сторон приводят к мирному исходу. Варианты альтернатив (-/+) или (+/-) могут привести к мирному варианту согласия, что определяется цепочкой причинно- следственных альтернатив в многоходовом взаимодействии.

Пример 3.14. Рассмотрим пример решения конфликтной ситуации.

Женщина заплатила на рынке за 2 кг помидоров, а контрольные весы показали недовес 200 г. Она попросила продавца забрать помидоры и вернуть деньги. Продавец отказал и оскорбил покупательницу.

Альтернативы покупательницы: IIi - вызвать администрацию, П 2 - обратиться в правоохранительные органы, П 3 - оскорбить продавца и потребовать вернуть деньги.

Альтернативы продавца: К - вернуть деньги, К 2 - оскорбить покупательницу и не вернуть деньги, К 3 - не вернуть деньги.

В качестве характеристик оценки исходов конфликта выберем следующие.

Э - сила эмоционального возбуждения, дБ (0,19)

tk - время конфликтного взаимодействия, мин (0,17)

т - продолжительность негативных эмоций, мин (0,15)

О с - количество обидных, грубых слов, шт. (0,13)

Л к - количество участников конфликта, человек (0,11)

t cn - послеконфликтный период, мин (0,09);

Т - суммарные затраты времени, мин (0,07);

З м - затраты материальные, руб. (0,05);

t n - предконфликтный период, мин (0,03);

т+ - продолжительность позитивных

Характеристики расположены по рангу, в скобках указан их вес М / 0 найденный методом парных сравнений (п. 1.3).

Введем 10-балльную оценку характеристик конфликта по шкале хуже (Б/, = 1) - лучше (Б* = 10) и сформируем матрицу их возможных значений (табл. 3.22).

и нейтральных эмоций, мин (0,01).

Таблица 3.22

Теперь необходимо для каждой пары альтернатив (П„ К,) установить фактические значения характеристик конфликта Ру, определить балльную оценку характеристик Б/ХЛ))* а затем вычислить значения исходов by по формуле

где т - количество характеристик конфликта; М - вес k- характеристики конфликта; Бь(Ру) - балльное значение k-й характеристики конфликта исхода пары альтернатив II/, К,-.

Например, для пары альтернатив Пj, К и условных значениях характеристик найдем значение исхода Ь п

Аналогично проводим вычисления исходов by для остальных пар альтернатив и таким образом построим игровую модель конфликтной ситуации в виде платежной матрицы

Пользуясь принципом минимакса, находим нижнюю и верхнюю цены игры, которые равны а = Р = 3,23, тогда пара альтернатив 11 (, К] определяет седловую точку игры. Следовательно, минимаксные стратегии участников конфликта П[, Kj являются оптимальными.

Фактически покупательница так и сделала: вызвала администратора, который изъял гири у продавца, запретил торговлю, а продавец принял назад помидоры и вернул деньги.

Следует заметить, что при других значениях показателей конфликта может быть построена матрица, которая не содержит седловой точки, тогда можно пользоваться критериями Вальда, Сэвиджа, Гурвица, а также воспользоваться симплексным методом линейного программирования для решения игры в смешанных стратегиях.

Ход в игреэто выбор и осуществление одним игроком одного из предусмотренных правилами игры действий. Результат одного хода как правило еще не результат игры а лишь изменение ситуации. Стратегияэто последовательность всех ходов до окончания игры. Обозначим выигрыш игрока Pj через vj.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Преподаватель: Платонова Татьяна Евгеньевна

Лекция 15. Игровые модели конфликтных ситуаций

Теория игр

Основные понятия теории игр

Игра -это математическая модель конфликтной ситуации. В отличие от реальных конфликтных ситуаций, в математической модели игра ведется по заранее зафиксированным правилам и условиям.

Ход в игре -это выбор и осуществление одним игроком одного из предусмотренных правилами игры действий. В игре двух лиц ходы строго чередуются. Результат одного хода, как правило, еще не результат игры, а лишь изменение ситуации.

Стратегия -это последовательность всех ходов до окончания игры. Термин партия связан с частичной возможной реализацией правил.

Пусть в игре участвуют n партнеров. Обозначим выигрыш игрока Pj через v j . При этом положительное значение v j означает выигрыш, отрицательное-проигрыш, а нулевое значение-ничья.

Цель игры-максимизация выигрыша за счет другого.

Рассмотрим вкратце классификацию игр.

  • По количеству игроков игры бывают парные (n =2) и множественные (n > 2).
  • В зависимости от числа стратегий игры делятся на конечные , если у игроков имеется конечное число стратегий, и бесконечные , в противном случае.
  • Игры бывают с нулевой суммой , если одни выигрывают за счет других.
  • Парные игры с нулевой суммой называются антагонистическими .
  • Конечные антагонистические игры называются матричными .
  • В зависимости от взаимоотношений игроков игры делятся на кооперативные (в которых заранее определены коалиции), коалиционные (игроки могут вступать в соглашения) и бескоалиционные (игрокам нельзя вступать в соглашения).

Ходы игроков делятся на личные , если ход выбирается сознательно, и случайные , если ход выбирается по механизму случайного выбора.

Стратегии бывают оптимальные , которые обеспечивают игроку наибольший успех-выигрыш, и неоптимальные .

Матричные игры

В общем случае матричная игра задается прямоугольной матрицей размерности mxn :

Один игрок имеет m возможных стратегий (A 1 , A 2 ,…, A m ), а другой игрок- n возможных стратегий (B 1 , B 2 ,…, B n ). Элемент-выигрыш, который платит второй игрок первому, если первый выбирает стратегию A i , а второй игрок- стратегию B j . При этом значение выигрыша может быть меньше нуля.

Представим матричную игру в табличной форме, называемой платежной матрицей :

a 11

a 12

a 1n

a 21

a 22

a 2n

a m1

a m2

a mn

Сформулируем основной принцип матричной игры : первый игрок стремится как можно больше выиграть, а второй – как можно меньше проиграть . Исходя из этого принципа, оба игрока являются сознательными, а матрица игры составлена с точки зрения выигрыша первого игрока; таким образом, выигрыш первого игрока является одновременно проигрышем второго.

Рассмотрим игру с позиции первого игрока. Пусть первый игрок рассматривает возможность применения своей первой стратегии (первой строки матрицы). Тогда его выигрыш в самом худшем случае не будет меньше, чем минимальный элемент первой строки, т.е. . Аналогично, его выигрыш при применении произвольной стратегии А i составит величину, не меньшую, чем. Таким образом, он может среди всех своих стратегий выбрать стратегию, наилучшую в смысле наибольшего из возможных минимальных выигрышей. Это значение гарантированного выигрыша в наихудших условиях противодействия второго игрока называется нижней чистой ценой игры максимину ):

Теперь рассмотрим точку зрения второго игрока. При использовании им своей первой стратегии, которая представлена первым столбцом платежной матрицы, его максимальный проигрыш составит величину при самых неблагоприятный действиях первого игрока. Аналогично, его проигрыш при применении произвольной стратегии В j составит величину, не большую, чем. Это значение гарантированного проигрыша в наихудших условиях противодействия первого игрока называется верхней чистой ценой игры , и оно равно следующему выражению (минимаксу ):

Поэтому стратегии первого игрока называются максиминными , а второго – минимаксными .

Пример 1 . Найти нижнюю и верхнюю чистые цены матричной игры с матрицей:

Нижняя чистая цена игры равна, верхняя чистая цена игры равна. Таким образом, в данном случае. Элемент называется седловым элементом матрицы игры (он является одновременно минимальным в своей строке и максимальным в своем столбце), а сама игра – игрой с седловой точкой. При этом нижняя и верхняя чистые цены матричной игры совпадают, и они равны чистой цене игры. Опримальными стратегиями игроков являются, и отступать от них невыгодно ни одному из игроков.

Пример 2 . Решим аналогичную задачу для игры с матрицей:

Здесь имеем. Чистая цена игры. Таким образом, и в игре отсутствует седловая точка. Решение такой игры затруднено. Поясним эту мысль. Стратегия гарантирует первому игроку выигрыш не менее 4 единиц в худшем случае, когда второй игрок выбирает стратегию. Аналогично стратегия гарантирует второму игроку проигрыш не более 7 единиц в худшем случае, когда первый игрок выбирает стратегию. Первому игроку можно избрать стратегию, чтобы выиграть 9 единиц, но второй игрок выберет стратегию.

Создается ситуация, когда партнеры заметались по стратегиям. Значит, в данном случае сам подход к игре необходимо менять.

Чистые и смешанные стратегии игроков

Чистая стратегия игрока – это возможный ход игрока, выбранный им с вероятностью, равной 1.

Представим чистые стратегии игроков из примера 1 в виде единичных векторов: стратегия первого игрока, стратегия второго игрока. В общем виде для пары стратегий чистые стратегии можно записать в виде, причем в первом векторе единица стоит на i - й позиции, а во втором векторе – на j - й позиции.

Смешанной стратегией первого (второго) игрока называется вектор:

Здесь величины вероятности применения соответствующих стратегий первого и второго игроков.

Игра называется активной , если.

Исходя из рассмотренных определений, можно сделать следующие выводы:

  1. Игра приобретает случайный характер.
  2. Случайной становится величина выигрыша (проигрыша).
  3. Средняя величина выигрыша (математическое ожидание выигрыша) является функцией от смешанных стратегий: и называется платежной функцией игры .

Стратегии называются оптимальными , если для произвольных стратегий выполняется условие.

Значение платежной функции при оптимальных стратегиях игроков определяет цену игры , т.е. .

Решением игры называется совокупность оптимальных статегий и цены игры.

Теорема (основная теорема матричных теории игр - теорема фон Неймана). Любая матричная игра имеет по крайней мере одно решение в смешанных стратегиях – две оптимальные стратегии и соответствующую им цену: .

Методы решения матричных игр

Все методы решения матричных игр, рассматриваемые в нашем курсе, опираются на теорему об активных стратегиях.

Теорема (об активных стратегиях). Если один игрок придерживается своей оптимальной смешанной стратегии, то выигрыш остается неизменным и равным цене игры, если другой игрок не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях).

Теперь рассмотрим некоторые частные случаи решаемых матричных игр.

  1. Игра, имеющая седловой элемент в платежной матрице (игра с седловой точкой)

В этом случае первый игрок реализует свою максиминную стратегию, а второй игрок – свою минимаксную стратегию, нижняя чистая цена игры равна верхней чистой цене игры. Тогда говорят, что игра решается в чистых стратегиях, отклоняться от которых невыгодно никому (см. пример 1).

  1. Игра с платежной матрицей 2 на 2, не имеющей седлового элемента.

Здесь нет оптимального решения в чистых стратегиях, поэтому решение отыскивается в смешанных стратегиях. Чтобы их найти, воспользуемся теоремой об активных статегиях. Если первый игрок придерживается своей оптимальной смешанной стратегии, то его средний выигрыш будет равен цене игры, какой бы активной стратегией ни пользовался второй игрок.

Пусть дана платежная матрица

(вокруг матрицы записаны смешанные стратегии игроков). Запишем для первого игрока два уравнения: первое – для случая прменения вторым игроком только его первой стратегии, и тогда используются только элементы первого столбца матрицы, второе – для случая применения вторым игроком только своей второй стратегии, и тогда используются только элементы второго столбца матрицы. Левые части этих уравнений вычисляют математическое ожидание выигрыша первого игрока, которое равно цене игры. Эти два уравнения содержат сразу три неизвестные - , и сами уравнения при этом являются однородными, поэтому для однозначной разрешимости системы необходимо третье уравнение со свободным членом. Этим добавочным и очень важным уравнением является условие нормировки, согласно которому сумма вероятностей всех событий должна равняться единице. Таким образом, окончательно система уравнений для первого игрока выглядит так:

Эта система решается очень просто по той причине, что в ней можно из третьего уравнения выразить одну неизвестную величину через другую. Решение данной системы дает значения оптимальной смешанной стратегии первого игрока и соответствующую ей цену игры.

Для полного решения игры осталось найти оптимальную смешанную стратегию второго игрока. Здесь игроки как бы меняются местами. Построение системы уравнений аналогично предыдущему случаю. Отличие в том, что в качестве коэффициентов системы берутся не столбцы матрицы, а строки, поскольку именно строки отвечают чистым стратегиям первого игрока. Таким образом, система выглядит так:

Пример 3. Найти смешанные стратегии игроков для матрицы.

Составим системы уравнений для первого игрока и для второго:

Решение которых даёт

Таким образом, запишем решение игры в виде:

  1. Графическое решение игры два на два.

Снова рассмотрим пример 3. Отложим на оси абсцисс отрезок единичной длины. На концах этого отрезка нарисуем вертикальные оси I - I и II - II . Отложим на оси I - I значения выигрышей первого игрока при использовании им первой стратегии. На оси II - II отложим выигрыши первого игрока при использовании им второй стратегии. Соединим точки отрезками прямых. Ломаная B 1 KB 2 - нижняя граница выигрыша . На этой границе лежит минимальный выигрыш игрока А при любой его смешанной стратегии. Точка К , в которой этот выигрыш достигает максимума, определяет решение и цену игры. Для смешанной стратегии второго игрока можем также записать:

Стратегию второго игрока можно найти и непосредственно, если на графике поменять игроков местами, а вместо максимума нижней границы выигрыша рассмотреть минимум верхней границы проигрыша. В любом случае точка К является одновременно точкой максимина и минимакса.

  1. Графическое решение игры .

Построение аналогично случаю два на два. Здесь n стратегий противника изобразятся отрезками n прямых. Далее рассматривается нижняя граница, которая представляет собой ломаную. Максимум ломаной достигается в одной из вершин, где пересекаются две стратегии противника, которые являются активными .

В теории игр доказывается, что у любой конечной игры существует решение, в котором число активных стратегий каждой стороны не превосходит наименьшего из чисел или. Следовательно, игра имеет решение, в котором с каждой стороны участвует не более двух активных стратегий. (Так же может быть решена и игра). Стоит только найти эти стратегии – и игра превращается в игру.

Пример 4 . Решить игру со следующей платежной матрицей:

Эта игра имеет 2 стратегии со стороны первого игрока и три стратегии со стороны второго. Поэтому графическим способом определим одну из стратегий второго игрока, которая является неактивной. Построим график относительно стратегий первого игрока.

Из графика видно, что для второго игрока явно невыгодной является первая стратегия, которая является неактивной. Таким образом, из матрицы игры исключаем первый столбец, соответствующий первой стратегии второго игрока, и приходим к матрице размерности два на два следующего вида:

Для этой матрицы запишем систему уравнений - для первого игрока, и систему: - для второго игрока. Решение этих систем дает следующий результат:

  1. Игра с платежной матрицей mx2

Как уже отмечалось выше, игра предварительно решается графически с точки зрения второго игрока. При этом определяются активные стратегии второго игрока. На графике применяется минимаксная стратегия, и рассматривается минимум верхней границы проигрыша. Рассмотрим пример.

Пример . Решить матричную игру со следующей матрицей:

Построим график, где слева отложим значения проигрышей второго игрока при использовании им первой стратегии, а справа – значения проигрышей второго игрока при использовании им второй стратегии.

Из графика видно, что вторая стратегия для первого игрока является невыгодной, поскольку при её применении выигрыш первого игрока (и, соответственно, проигрыш второго) будет меньше. Таким образом, активными стратегиями первого игрока будут первая и третья. Соответственно запишем системы уравнений для смешанных стратегий игроков:

Решение системы: Для первого игрока система имеет вид (стратегию А 2 не учитываем как неперспективную):

Решением системы будут значения Таким образом, решение игры выглядит так: .

  1. Игры с доминирующими и дублирующими стратегиями.

Рассмотрим две стратегии первого игрока – i – ю и k – ю. При этом пусть для всех элементов соответствующих строк матрицы выполняются условия: . В этом случае говорят, что i – я стратегия первого игрока доминирует над его j – й стратегией. Если каждое неравенство выполняется как строгое, то говорят, что одна стратегия строго доминирует над другой. В любом случае из двух стратегий первый игрок предпочтет доминирующую, поскольку при использовании доминируемой стратегии его выигрыш по меньшей мере не увеличится. В этом случае можно принять.

Аналогично рассмотрим две стратегии второго игрока - j - ю и l – ю, и при этом для элементов соответствующих столбцов матрицы выполняются условия: . Для второго игрока, как известно, более выгодной является стратегия, дающая меньший проигрыш, поэтому говорят, что j - я стратегия доминирует над l - й. Если попарные неравенства являются строгими, то говорят, что одна стратегия строго доминирует над другой. При этом, естественно, .

В случае, если у какого – либо из игроков две стратегии имеют в матрице только совпадающие элементы, то эти стратегии называются дублирующими . При этом неважно, какую из них игрок предпочтет для решения игры.

В результате при наличии доминирующих и дублирующих стратегий часть стратегий можно не рассматривать, что приведет в ряде случаев к значительному упрощению платежной матрицы.

  1. Эквивалентное преобразование платежной матрицы.

Это преобразование применяется для облегчения расчетов, и при этом оптимальные смешанные стратегии игроков не изменяются.

Теорема . Оптимальные смешанные стратегии соответственно 1 – го и 2 – го игроков в матричной игре с ценой v будут оптимальными и в матричной игре с ценой, где.

Пример . В матричной игре с платежной матрицей примем b =10, C =-6 . Применим преобразование bA + c , тогда получим игру с теми же оптимальными стратегиями, но с другой эквивалентной матрицей: .

Эквивалентность матричной игры паре двойственных ЗЛП.

Рассмотрим матричную игру размером. Сведем её к задаче линейного программирования в общем виде. Имеем:

Будем считать, что. Это всегда можно сделать по теореме об эквивалентном преобразовании платежной матрицы, следовательно, можно считать цену игры положительным числом, v >0 .

Для первого игрока имеем систему неравенств (с учетом того, что первый игрок стремится как можно больше выиграть, цена игры для него будет превышать v ):

Введем новые переменные делением на цену игры: , тогда получим ЗЛП:

При построении целевой функции учитываем, что цена игры для первого игрока максимизируется.

Аналогично имеем для второго игрока систему неравенств:

Разделив на цену игры и введя новые переменные, получим ЗЛП для второго игрока:

Здесь целевая функция задана на максимум, т.к. цена игры для второго игрока минимизируется.

В результате получили пару симметричных двойственных ЗЛП. Согласно первой теореме двойственности, следовательно, цена игры v имеет одно и тоже значение для обоих игроков.

Понятие об игре с природой (статистические игры)

Здесь один из участников – человек или группа лиц с общей целью – т.н. статистик (игрок А), другой участник – природа (игрок П), или весь комплекс внешних условий, при которых статистику приходится принимать решение. Природа безразлична к выигрышу и не стремится обратить в свою пользу промахи статистика.

Статистик имеет m стратегий; природа может реализовать n различных состояний. При этом могут быть известны вероятности реализации состояний природы. Если статистик может оценить применение каждой своей стратегии при любом состоянии природы, то игру можно задать платежной матрицей:

П 1

П 2

П n

a 11

a 12

a 1n

a 21

a 22

a 2n

a m1

a m2

a mn

При упрощении платежной матрицы нельзя отбрасывать те или иные состояния природы, т.к. природа может реализовать любое из своих состояний независимо от того, выгодно это статистику или нет. Природа может даже помогать игроку А .

При выборе оптимальной стратегии статистика пользуются различными критериями. При этом опираются как на платежную матрицу, так и на матрицу рисков.

Риск статистика. Матрица рисков имеет ту же размерность, что и платежная матрица:

Пересчет из платежной матрицы в матрицу рисков производится по столбцам: в каждом столбце платежной матрицы выбирается наибольший элемент, который в матрице рисков заменяют нулем, а остальные элементы столбца матрицы рисков получают вычитанием соответствующих элементов из этого наибольшего элемента.

Если вероятности состояний природы известны, используется критерий Байеса : выбирается та стратегия, которая обеспечивает максимальную величину среднего выигрыша статистика:

При неизвестных вероятностях состояний природы применяется принцип недостаточного основания Лапласа, когда все состояния считаются равновероятными:

Тогда средний выигрыш по каждой стратегии рассчитывается как среднее арифметическое выигрышей по всем возможным состояниям природы:

Эквивалентный подход заключатся в подборе стратегии, обеспечивающей наименьший средний риск статистика:

при известных вероятностях состояний природы и

в случае, если эти вероятности неизвестны. При таком подходе результат будет точно таким же, что и при анализе наибольшего среднего выигрыша.

Если вероятности состояний природы неизвестны, то более широко используются критерии Вальда, Сэвиджа и Гурвица.

Оптимальной по критерию Вальда считается стратегия А i , которая обеспечивает из всех наименьших выигрышей наибольшее значение. В этом случае из матрицы выигрышей (т.е. платежной матрицы) в каждой строке выбирается наименьший элемент, а затем среди этих элементов выбирается наибольший:

По критерию Сэвиджа оптимальной считается стратегия, которая минимизирует величину максимального риска, т.е. из каждой строки матрицы рисков выбирается максимальный элемент, а затем среди этих элементов выбирается строка, в которой находится минимальный элемент:

Оптимально по критерию Гурвица считается стратегия, найденная из условия:

где - «коэффициент пессимизма». При χ=1 имеем критерий Вальда, или критерий крайнего пессимизма, при χ=0 – критерий «крайнего оптимизма». Рекомендуется выбирать χ между нулем и единицей, из субъективных соображений.

В результате применения нескольких критериев они сравниваются между собой, и в качестве наилучшей выбирается та стратегия статистика, которая чаще других фигурирует в качестве наилучшей.

Другие похожие работы, которые могут вас заинтересовать.вшм>

14639. Этические принципы и нормы диалого-вого взаимодействия преподавателя и студентов.Предупреждение конфликтных ситуаций в образовательной практике 17.82 KB
Этические принципы и нормы диалогового взаимодействия преподавателя и студентов. Учебное занятие призвано не только обеспечить теоретическую основу обучения развить интерес к учебной деятельности и конкретной учебной дисциплине сформировать у студентов ориентиры для самостоятельной работы над курсом но и осознать ими принципы и нормы этики делового взаимодействия с преподавателями и сокурсниками. Этические принципы и нормы делового общения преподавателя и студентов на занятии – это еще и способ эмоционального воздействия на обучающихся...
16112. Игровые модели форвардных рынков однородных товаров 63.56 KB
Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований по проекту 08-01-00249 и гранта НШ 693. Рынок электроэнергии характеризующийся значительной концентрацией производства барьерами для входа на рынок и высокими требованиями к надежности компаний предоставляет производителям реальные возможности получения сверхприбыли за счет использования рыночной власти в ущерб потребителям и суммарному общественному благосостоянию. На практике ограниченность производственных мощностей имеет существенное значение при...
18059. Взаимосвязь качеств личности и особенностей общения в конфликтных ситуациях в управленческой деятельности 148.51 KB
Существенным элементом межличностного общения влияющим на снижение конфликтности в управленческой деятельности являются индивидуальные особенности личности. Несмотря на то что в интересах управленческой деятельности делалось и делается немало всё же этого недостаточно что в очередной раз подтверждает актуальность рассматриваемой нами проблемы. Научная новизна работы состоит в том что в...
9697. Игровые технологии обучения нa урокaх геогрaфии 1014.86 KB
Изучить нaучно-педaгогическую, психолого-педaгогическую, методическую литерaтуру по теме исследовaния; выявить и обосновaть комплекс игровых технологий обучения нa урокaх геогрaфии; рaзрaботaть и проaнaлизировaть рaзрaботки с применением игровых технологий.
18262. Игровые методы обучения как условие социальной адаптации младших школьников 711.61 KB
Теоретически обосновать и проверить через эксперимент эффективность влияния дидактической игры на социальную адаптацию младших школьников. Процесс социальной адаптации младших школьников будет протекать эффективнее если: -Между педагогом и учащимися устанавливаются субъект-субъектные отношения; -Учитываются индивидуальные качества младших школьников; -На уроках в начальной школе будут использоваться игры. Определить состояние влияния дидактической игры на младших школьников в педагогической теории. Раскрыть...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
545. Классификация чрезвычайных ситуаций 5.35 KB
Источником чрезвычайной ситуации может служить опасное природное явление авария или опасное техногенное происшествие широко распространенная инфекционная болезнь людей сельскохозяйственных животных и растений а также применение современных средств поражения в результате чего произошла или может возникнуть чрезвычайная ситуация. Чрезвычайные ситуации могут быть классифицированы по значительному числу признаков. Так по происхождению чрезвычайные ситуации можно подразделять на ситуации техногенного антропогенного и природного характера....
546. Фазы развития чрезвычайных ситуаций 4.9 KB
Фазы развития чрезвычайных ситуаций Чрезвычайные ситуации в том числе аварии на промышленных объектах в своем развитии проходят пять условных типовых фаз: Первая фаза это накопление отклонений от нормального состояния или процесса. Вторая фаза это инициирование чрезвычайного события то есть аварии катастрофы или стихийного бедствия. Для случая аварии на производстве в этот период предприятие или его часть переходят в нестабильное состояние когда появляется фактор неустойчивости. При аварии на производстве в этот период происходит...
554. Ликвидация последствий чрезвычайных ситуаций 5.54 KB
Ликвидация последствий чрезвычайных ситуаций В качестве спасательных сил используют обученные спасательные формирования создаваемые заблаговременно а также вновь сформированные подразделения из числа работников промышленного объекта. В качестве технических средств используют как объектовую технику бульдозеры экскаваторы со сменным оборудованием самосвалы и так далее так и спецтехнику находящуюся в распоряжении спасательных формирований специальные подъемнотранспортные машины ручной спасательный инструмент средства контроля...
4641. Профилактика криминогенных ситуаций, возникающих в семье 187.63 KB
Преступность в том числе внутри семьи трудно искоренить однако нужно стремиться к тому чтобы подобных уродливых проявлений человеческого бытия было как можно меньше. Так если их распределить и порядке убывания значимости то получим следующую номинальную шкалу концентрирующих объектов по данным осужденных супругов: супружеские измены ревность злоупотребление спиртным проведение одним из супругов досуга вне семьи отказ одного из супругов от совместного проживания отношения с друзьями подругами отношения с...

Группа ученых под руководством сотрудника Нижегородского университета им. Н.И. Лобачевского Александра Петухова выявила параметры, которые нужны для управления системой, описывающей социальные конфликты. В случае полного контроля над этими характеристиками ученые смогут создавать условия для возникновения или предотвращения такого конфликта. Результаты изложены в журнале Simulation.

При математическом моделировании социальных и политических процессов нужно учитывать то, что они не могут быть строго заданными, поскольку подвержены постоянным изменениям. Часто социальный процесс сравнивают с броуновской частицей. Такие частицы двигаются по траектории, которая с одной стороны вполне определенна, но при близком рассмотрении оказывается очень извилистой, с множеством мелких изломов. Эти мелкие изменения (флуктуации) объясняются хаотическим движением других молекул. В социальных процессах флуктуации можно трактовать как проявления свободной воли его отдельных участников, а также случайными проявлениями внешней среды.

В физике такие процессы, как правило, описываются стохастическим диффузионным уравнением Ланжевена, которое относительно часто используется и для моделирования некоторых социальных процессов. Подход, основанный на подобных уравнениях, позволяет учесть проявления свободной воли его отдельных участников и случайные проявления внешней среды для социальной системы. Кроме того, благодаря этому подходу можно рассчитать поведение социальной системы как для единого целого, так и для отдельных индивидов-частиц; также он позволяет выявить характерные устойчивые режимы функционирования систем в зависимости от различных начальных условий. Наконец, с точки зрения численного моделирования диффузионные уравнения в достаточной степени апробированы и изучены.

В основе новой модели лежит идея о том, что индивиды взаимодействуют в обществе через поле коммуникации. Его создает каждый индивид в обществе, моделируя информационное взаимодействие между индивидами. Однако следует иметь в виду, что здесь речь идет о социуме, который отличается от объектов классической физики. По словам руководителя исследований Александра Петухова, с точки зрения переноса информации от индивида к индивиду, пространство в обществе сочетает как классические пространственные координаты, так и дополнительные специфические особенности. Это связанно с тем, что в современном мире для передачи информации не нужно находиться рядом с объектом воздействия.

«Таким образом, социум - это многомерное, социально-физическое пространство, отражающее возможность одного индивида "дотянуться" своим коммуникационным полем до другого, то есть повлиять на него, на его параметры и возможность перемещаться в данном пространстве», - отмечает Александр Петухов. Близкое расположение индивидов в данной модели говорит о том, что они регулярно обмениваются информацией. Для такой постановки проблемы конфликтом следует считать вариант взаимодействия индивидов или групп индивидов, в результате которого расстояние в этом многомерном пространстве между ними резко растет.

На основе такого подхода и разработанной модели ученые нашли следующие закономерности: они смогли установить конкретные граничные условия для возникновения социального конфликта и его усугубления; обнаружили характерную область устойчивости для социальной системы, в которой между объектами сохраняется достаточно малая социальная дистанция; определили зависимости, которые соответствуют некоторым современным этносоциальным конфликтам, что дает возможность использовать эту модель как инструмент при прогнозировании их динамики и формировании сценариев урегулирования.

Также в рамках данных исследований ученые доказали, что переход из устойчивого состояния в неустойчивое для многокомпонентной когнитивной системы распределенного типа представляет собой пороговый эффект. По словам Александра Петухова, выполненные эксперименты выявили конкретные параметры, необходимые для управления подобной системой: они определяют переход из устойчивого состояния в неустойчивое, что дает возможность, при полном их контроле, создавать условия для возникновения социального конфликта, или, напротив, - предотвращать. «Развивая данный подход в дальнейшем, мы получим возможность создать на его основе инструмент для полноценного прогнозирования социальных конфликтов», - подводит итог Александр Петухов.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Пресс-релизы о научных исследованиях, информацию о последних вышедших научных статьях и анонсы конференций, а также данные о выигранных грантах и премиях присылайте на адрес science@сайт.

Ключевые слова

КОНФЛИКТ / ФОРМАЛЬНАЯ ЛОГИКА / ЭЛЕМЕНТЫ / ЛОГИЧЕСКИЕ ОПЕРАЦИИ / ЗАКОНЫ ЛОГИКИ / ВЫСКАЗЫВАНИЕ / ДВУЗНАЧНАЯ ЛОГИКА / МНОГОЗНАЧНАЯ ЛОГИКА / CONFLICT / FORMAL LOGIC ELEMENTS / LOGIC OPERATIONS / LAWS OF LOGIC / STATEMENT / TWO-VALUED LOGIC / MANY-VALUED LOGIC

Аннотация научной статьи по математике, автор научной работы - Левин Виталий Ильич, Немкова Елена Анатольевна

Актуальность. В статье рассмотрена актуальная проблема адекватного математического моделирования поведения конфликтующих систем, применительно к системам, конфликты в которых не обязательно связаны с антагонистическим противоречием между участниками системы. Дана формальная постановка задачи логико-математического моделирования процесса взаимодействия конфликтующих участников системы. Эта задача заключается в построении алгебр двузначной и многозначной логики , моделирующих различные типы мышления, различие которых и является источником конфликта . Цель статьи. Целью статьи является изложение и детальный анализ двузначной и многозначной логик , с упором на выяснение фундаментальных различий законов этих логик, влекущих за собой существенные различия в мышлении индивидов, базирующихся на указанных логиках, и вытекающие из этого различия конфликты между носителями различных логик мышления. Метод. Для решения поставленной задачи используется традиционный метод построения логических систем, основанный на введении базовых постоянных элементов , основных операций над ними и выявлении законов, которым подчиняются эти операции. При этом основное внимание уделяется различиям элементов операций над ними и законов операций между двузначной и многозначной логиками . Новизна. Сформулировано положение, согласно которому существуют системы, конфликты между участниками которых вызываются не антагонистическими противоречиями их интересов, а различием их логик мышления, следствием которого является непонимание, провоцирующее подозрительность, а потом и агрессию. Это так называемое воображаемые конфликты , борьба с которыми требует специальных подходов. Результат. Разработана процедура построения алгебры логики различной значности, адекватно моделирующей процессы мышления. Описаны двузначная и многозначная логики мышления и их законы. Установлены фундаментальные различия двузначной и многозначной логик . Приведен пример анализа конфликта , вызванного различием логик мышления.

Похожие темы научных работ по математике, автор научной работы - Левин Виталий Ильич, Немкова Елена Анатольевна

  • Логико-математические методы и их применения

    2018 / Левин Виталий Ильич
  • Логика Н. А. Васильева и многозначные логики

    2016 / Максимов Д.Ю.
  • Логические методы расчета надежности систем. Часть i. математический аппарат

    2017 / Левин Виталий Ильич
  • Логико-алгебраический подход к моделированию конфликтов

    2015 / Левин Виталий Ильич
  • Неклассические модификации многозначных матриц классической логики. Часть i

    2016 / Девяткин Л.Ю.
  • Предмет и перспективы развития логики

    2018 / Ивлев Ю.В.
  • Условия применимости классической логики к философским рассуждениям

    2018 / Павлов Сергей Афанасьевич
  • Математический аппарат синтеза k-значных цифровых логических схем на основе линейной алгебры

    2016 / Будяков П.С., Чернов Н.И., Югай В.Я., Прокопенко Н.Н.
  • Система натурального вывода для трехзначной логики Гейтинга

    2017 / Петрухин Ярослав Игоревич
  • Оптимизация выбора базиса для линейного логического синтеза цифровых структур

    2014 / Прокопенко Николай Николаевич, Чернов Николай Иванович, Югай Владислав Яковлевич

Relevance. In the article the actual problem of adequate mathematical modeling of the behavior of the conflicting systems in relation to systems, conflicts are not necessarily related to the contradiction between the participants in the system. An exact statement of the problem of logical and mathematical modeling of the interaction between the conflicting parties of the system. The task is to build a two-valued algebra and multi-valued logic, simulating different types of thinking, and that difference is a source of conflict . The purpose of the article. The aim of the article is a summary and a detailed analysis of the two-valued and multi-valued logic, with a focus on finding the fundamental differences of the laws of logic , entailing significant differences in the thinking of individuals, based on these logics and the resulting differences in conflicts between carriers of different logics of thinking. Method. To solve this problem, we use the traditional method of construction of logical systems based on the introduction of basic elements of permanent, major operations on them and identify the laws that govern these operations. The main attention is paid to the differences of elements of operations on them and transactions between the laws of two-valued and multi-valued logic. Novelty. Formulated provision according to which there are systems, conflicts between the parties which are not caused by the contradictions of their interests and the difference of their logic thinking, the result of which is a misunderstanding, provoking suspicion, and then aggression. This so-called imaginary conflicts, the fight against which requires special approaches. Result. The procedure of constructing the algebra of logic different valence, adequately modeling the processes of thinking. We describe the two-valued and multi-valued logic thinking and their laws. Established the fundamental differences of two-valued and multi-valued logic. An example of the analysis of the conflict caused by the difference logic thinking.

Текст научной работы на тему «Логико-математическое моделирование конфликтов»

Логико-математическое моделирование конфликтов

Левин В. И., Немкова Е. А.

Актуальность. В статье рассмотрена актуальная проблема адекватного математического моделирования поведения конфликтующих систем, применительно к системам, конфликты в которых не обязательно связаны с антагонистическим противоречием между участниками системы. Дана формальная постановка задачи логико-математического моделирования процесса взаимодействия конфликтующих участников системы. Эта задача заключается в построении алгебр двузначной и многозначной логики, моделирующих различные типы мышления, различие которых и является источником конфликта. Цель статьи. Целью статьи является изложение и детальный анализ двузначной и многозначной логик, с упором на выяснение фундаментальных различий законов этих логик, влекущих за собой существенные различия в мышлении индивидов, базирующихся на указанных логиках, и вытекающие из этого различия конфликты между носителями различных логик мышления. Метод. Для решения поставленной задачи используется традиционный метод построения логических систем, основанный на введении базовых постоянных элементов, основных операций над ними и выявлении законов, которым подчиняются эти операции. При этом основное внимание уделяется различиям элементов операций над ними и законов операций между двузначной и многозначной логиками. Новизна. Сформулировано положение, согласно которому существуют системы, конфликты между участниками которых вызываются не антагонистическими противоречиями их интересов, а различием их логик мышления, следствием которого является непонимание, провоцирующее подозрительность, а потом и агрессию. Это так называемое воображаемые конфликты, борьба с которыми требует специальных подходов. Результат. Разработана процедура построения алгебры логики различной значности, адекватно моделирующей процессы мышления. Описаны двузначная и многозначная логики мышления и их законы. Установлены фундаментальные различия двузначной и многозначной логик. Приведен пример анализа конфликта, вызванного различием логик мышления.

Ключевые слова: конфликт, формальная логика, элементы, логические операции, законы логики, высказывание, двузначная логика, многозначная логика.

Введение

Несомненна важность общей теории конфликта - науки, занимающейся расчетом, анализом, синтезом и разрешением общих моделей конфликтных ситуаций. В то же время ясно, что построение продуктивных моделей конфликта должно быть основано на привязке к наиболее важным конкретным классам конфликтующих систем. И самый большой интерес среди этих систем вызывает, конечно, человеческое общество.

Конфликтами в человеческом обществе с целью их практического разрешения в настоящее время занимается гуманитарная наука -конфликтология, являющаяся частью социологии. Однако эта наука не стремится вскрыть внутреннюю природу конфликтных ситуаций, а без этого невозможно построить соответствующие хорошие математические модели, позволяющие детально изучать такие ситуации.

Обычно считается, что источником человеческих конфликтов является противоречие между целями, которые различные люди ставят между собой . Однако не секрет, что большая (а возможно, и подавляющая) часть человечества - это люди, которые не ставят перед собой никаких особых целей.

№3. 2016

Sccs.intelgr.com

Но при этом они часто конфликтуют с другими людьми - как бесцельно существующими, подобными им, так и с вполне целеустремленными людьми. Этот факт побуждает предполагать, что в основе конфликтов между людьми лежит еще и какая-то другая особенность человеческой личности, не связанная напрямую с деятельностью человека и его целями, а присущая ему на генетическом уровне. В настоящей статье выдвигается и обосновывается гипотеза, согласно которой особенность человека, которая сильно, а иногда решающим образом влияет на возникновение (или отсутствие) его конфликтов с окружающими, это тип, а точнее - логика его мышления. С этой целью рассматриваются два существенно различных типа логики - двузначная и многозначная, а затем показывается, что основанные на них варианты человеческого мышления в значительной мере несовместимы. Эта несовместимость и приводит к взаимонепониманию между приверженцами двух указанных типов мышления и, в конечном счете, к конфликтам между ними.

1. Двузначная формальная логика

Двузначная формальная (иначе - математическая, символическая) логика высказываний, называемая еще классической, лежит в основе обычного человеческого мышления. Эта логика строится с помощью двух постоянных элементов: ИСТИНА (обозначение И) и ложь (обозначение Л); переменных, значениями которых служат значения истинности различных высказываний, и логических операций, которые можно выполнять над постоянными элементами. Высказывание - это утверждение, которое может быть либо истинным (И), либо ложным (Л). Поэтому логические операции можно выполнять и над высказываниями. Логические операции над постоянными элементами или высказываниями Р,Q следующие: отрицание Р (иначе «НЕ Р»), дизъюнкция Р V Q (иначе «Р ИЛИ Q»), конъюнкция Р л Q (иначе «Р И Q»), разделительная дизъюнкция Р 0 Q (иначе «ЛИБО Р, ЛИБО Q»), эквивалентность Р « Q (иначе « Р РАВНОСИЛЬНО Q»), импликация Р ® Q (иначе «ЕСЛИ Р, ТО Q»). Эти операции определены в таблицах истинности 1 и 2. Кроме высказываний, имеющих переменные значения истинности (И или Л), имеются два высказывания с постоянными значениями истинности: тождественно истинное высказывание или тавтология (обозначение Т) и тождественно ложное высказывание или противоречие (обозначение П).

Таблица 1 - Операция отрицания

Системы управления, связи и безопасности

Systems of Control, Communication and Security

sccs.intelgr.com

Таблица 2 - Операции дизъюнкции, конъюнкции, разделительной дизъюнкции, эквивалентности и импликации

P Q P V Q P Ù Q P ® Q P « Q P ® Q

Л Л Л Л Л И И

И Л И Л И Л Л

Л И И Л И Л И

И И И И Л И И

Во введенной логике справедливы следующие законы:

Переместительный закон для дизъюнкции и конъюнкции

Р V Q = Q V Р, Р л Q = Q л Р; (1)

Сочетательный закон для дизъюнкции и конъюнкции

(Р V Q) V Я = Р V (£ V Я), (Р л Q) л Я = Р л (£ л Я). (2)

Распределительный закон для конъюнкции относительно дизъюнкции

(Р V Q) л Я = (Р л Я) V (д л Я); (3)

Распределительный закон для дизъюнкции относительно конъюнкции

(Р л Q) V Я = (Р V Я) л (д V Я); (4)

Закон де Моргана

Р V Q = Р л Q, Р л Q = Р V Q; (5)

закон тавтологии

Р V Р = Р, Р л Р = Р, (6)

Закон поглощения

Р л (Р V Q) = Р, Р V (Р л Q) = Р; (7)

Закон действия над высказываниями с постоянными значениями истинности

Р V П = Р, Р V T = ^ Р л T = Р, Р л П = П, (8)

Закон двойного отрицания

Закон исключенного третьего

Р V Р = Т; (10)

Закон противоречия

Р л Р = П; (11)

Закон преобразования импликации

(Р ® Q) = PV Q (12)

Для доказательства законов двузначной логики строятся таблицы истинности их обеих частей, подобные табл. 1, 2. Если оказывается, что таблицы для обеих частей совпадают, то закон справедлив. Логические законы позволяют заменять выражения логики высказываний эквивалентными, но более простыми (либо более удобными в каком-то смысле) выражениями.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Построенная логика высказываний позволяет формально описывать процесс человеческого мышления, используя формальную конструкцию

А1 л А2 л... л Ап ® В. (13)

Здесь А1,...,Ап - исходные высказывания (посылки), В - новое

высказывание (заключение). Сложное высказывание (13) называется логическим выводом. Логический вывод может быть истинным или ложным. Если он истинен при любых значениях истинности посылок и заключения (т.е. тождественно истинен), он считается верным. В остальных случаях логический вывод считается неверным. Для проверки верности логического вывода можно построить его таблицу истинности и убедиться, что он тождественно истинен либо преобразовать выражение (13) логического вывода с помощью подходящих логических законов и привести его к тождественно истинному высказыванию.

Приведем еще один логический закон - транзитивности импликации, важный для логического вывода

(Р ® 0л(0 ® Я) ® (Р ® Я). (14)

Закон (14) показывает, что операция импликации ® транзитивна, что позволяет осуществлять логический вывод как многоступенчатый (цепочечный) процесс.

Двузначная формальная логика и реализующие ее автоматы широко используются для математического моделирования многих классов систем. В частности, конфликтующих систем .

2. Многозначная формальная логика

Все основные черты многозначной логики проявляются, начиная со значности к = 3. Поэтому ограничимся трехзначной формальной логикой высказываний. Эта логика лежит в основе человеческого мышления, более сложного, чем обычное. Она строится с помощью тех же постоянных элементов, что и двузначная логика: И и Л, с добавлением постоянного элемента НЕОПРЕДЕЛЕННОСТЬ (обозначение Н). Новый элемент является неопределенностью в том смысле, что он не истинен и не ложен. Как и в двузначной логике, в качестве переменных значений используется истинность различных высказываний. Эти значения теперь могут быть И, Л или Н. Логические операции можно выполнять над постоянными элементами И, Л и Н и над переменными (высказываниями), принимающими эти же значения И, Л и Н. В трехзначной логике имеются те же операции, что и в двузначной. Однако число возможных вариантов каждой операции значительно больше. В табл. 3-5 определены три наиболее употребительных варианта операции отрицания. В табл. 6 определены операции дизъюнкции Р V 0, конъюнкции Р л 0, разделительной дизъюнкции Р Ф 0, эквивалентности Р « 0, импликации Р ® 0 (по одному варианту для каждой операции). Кроме высказываний с переменными значениями истинности (И, Л или Н), имеются три высказывания с постоянными значениями истинности: И (называемое тавтологией Т), Л (называемое противоречием П) и Н (называемое неопределенностью Н).

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Первые две совпадают с соответствующими в двузначной логике, третье является новым высказыванием с постоянным значением истинности.

Таблица 3 - Зеркальное отрицание

Таблица 4 - Левое циклическое отрицание

Таблица 5 - Правое циклическое отрицание

Таблица 6 - Операции дизъюнкции, конъюнкции, разделительной дизъюнкции, эквивалентности и импликации

P Q P v Q P A Q P ® Q P « Q P ® Q

Л Л Л Л Л И И

Л Н Н Л Н Н И

Л И И Л И Л И

Н Л Н Л Н Н Н

Н Н Н Н Н Н Н

Н И И Н Н Н И

И Л И Л И Л Л

И Н И Н Н Н Н

И И И И Л И И

Во введенной трехзначной логике остаются справедливы законы двузначной логики, не содержащие операции отрицания. Это законы переместительный, сочетательный и распределительный (1)-(4), тавтологии, поглощения и действий с постоянными (6)-(8), транзитивности (14). Однако появляются новые законы действий над высказываниями с постоянным значением истинности Н

Н V Л = Н, Н V И = И, Н л Л = Л, Н л И = Н. (15)

Главное же отличие трехзначной логики от двузначной состоит в существенном изменении законов, содержащих операцию отрицания. Конкретный вид этих законов зависит от выбранного варианта операции отрицания. Если это операция зеркального отрицания (табл. 3), то остаются

Системы управления, связи и безопасности

Systems of Control, Communication and Security

sccs.intelgr.com

справедливыми законы де Моргана, двойного отрицания и преобразования импликации (5), (9), и (12) двузначной логики, однако закон исключенного третьего (10) переходит в следующий закон «частично исключенного третьего»

Р V Р = Т"(Р), где Т"(Р) = {И, при Р = И или Л; (16)

[И, при Р = Н; у 7

а закон противоречия (11) - в следующий закон «частичного противоречия»

Р л Р = П"(Р), где П"(Р) = {Л, при Р = И или Л; (17)

[И, при Р = И. у 7

Для операций левого и правого циклического отрицания (табл. 4 и 5) все законы двузначной логики, содержащие отрицание, трансформируется в соответствующие новые, более сложные законы трехзначной логики. Так, законы двойного отрицания (9), исключенного третьего (10) и противоречия (11) трансформируется в соответствующие законы - закон тройного отрицания

закон исключенного четвертого

Р V Р V Р = Т (19)

и закон полного противоречия

Р л Р л Р = П, (20)

а законы де Моргана (5) и преобразования импликации (12) - в соответствующие более сложные законы, форма которых уже зависит от того, какое циклическое отрицание использовано - левое или правое. В связи с обсуждаемой проблемой логики мышления особое значение имеет конкретизация закона (18) в виде

Р ф Р, "Р; (21)

закона (19) в виде закона «частично исключенного третьего»

ГИ, при Р = И или Л, Р V Р = Тл(Р), где Тл(Р) = { " р

[И, при Р = И,

П п ГИ, при Р = И или И, Р V Р = Тп(Р), где Тп (Р) = { " р

[И, при Р = Л,

для правого циклического отрицания; и закона (20) в виде закона «частичного противоречия»

- „ Г Л, при Р = Л или И, Р л Р = Пл (Р), где Пл (Р) = { " р _ тя

[И, при Р = И,

для левого циклического отрицания;

П п Г Л, при Р = Л или И, Р л Р = Пп (Р), где Пп (Р) = { " р

[И, при Р = И,

для правого циклического отрицания.

Как видно из (21), в трехзначной логике с операцией циклического отрицания не действует закон двойного отрицания. Далее, из (22) следует, что в этой логике не действует закон исключенного третьего - он трансформируется

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

в закон «частично исключенного третьего», конкретная форма которого зависит от варианта операции циклического отрицания (правое или левое). Аналогично, из (23) следует, что в этой логике не действует закон противоречия - он трансформируется в закон «частичного противоречия», конкретная форма которого также зависит от варианта операции циклического отрицания.

3. Логика и конфликты

Каждый мыслящий индивидуум в своей мыслительной деятельности всегда использует сознательно или интуитивно тот или иной вариант логики. Выше мы видели, что между двузначной и многозначной логиками есть существенные различия. Поэтому всех индивидуумов, по используемому в их мышлении преимущественного варианту логики, можно разделить на двузначных и многозначных мыслителей. Их основные различия заключаются в том, что для двузначного мыслителя любое высказывание может иметь только два значения истинности: истинно и ложно, причем отрицание одного дает другое, в то время как для многозначного мыслителя любое высказывание имеет, как минимум, три значения истинности: истинно, ложно и неопределенно. При этом операция отрицания может быть определена по-разному, так что отрицание любого значения истинности в общем случае может дать любое другое значение истинности.

Ввиду указанных глубоких различий между двузначными и многозначными мыслителями возникает сложная проблема их взаимоотношений. Сущность этой проблемы в том, что в рамках двузначного мышления трудно понять явно многозначную природу мира (с точки зрения современной науки). Такое постоянное недопонимание ведет к подозрительности и страху. В итоге двузначный мыслитель начинает конфликтовать с многозначным, склоняясь к силовому решению.

Рассмотрим простейший характерный пример. На банкете, во время застолья, художник, уже изрядно навеселе обращается к ученому: «Ты что не пьешь?» - Тот отвечает: «Не могу!». Художник продолжает настаивать: «Пей!». Ученый возражает: «Не буду!». Тогда художник заявляет громогласно: «Значит, ты собираешься написать на нас донос!». Наш художник, конечно типичный двузначный мыслитель, для которого существует лишь два варианта: пить и потому быть не способным донести и не пить и потому быть способным написать донос. Ему не приходит в голову, что есть и другие варианты, очевидные для ученого - многозначного мыслителя. Например, напиться до беспамятства, а потом донести о том чего не было, или вообще не пить и при этом не доносить из нравственных соображений.

Реальная версия этой полу фантастической истории произошла в 1938 году на правительственной даче в Кунцево, под Москвой, когда во время очередного банкета, устроенного И.В. Сталиным, ему не удалось заставить пить наркома кинематографии СССР Бориса Шумяцкого. После чего по приказу двузначного мыслителя Сталина подозрительный многозначный мыслитель Шумяцкий был расстрелян.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

Изложенные в данном разделе соображения могут быть положены в основу нового многозначно-логического подхода к моделированию конфликтов, отличного от двузначно-логического подхода, основанного на математическом аппарате, рассмотренном в работе . Такой новый подход открывает новые перспективы моделирования конфликтов. В частности, он позволит увеличить число градаций взаимодействия конфликтующих систем и тем самым сделает анализ этого взаимодействия более тонким. Подробное изложение данного подхода предполагается в отдельной статье.

Заключение

В статье показано, что двузначная и многозначная логики подчиняются существенно различным законам, благодаря чему могут быть использованы для моделирования различных типов мышления. Выявлено, что источником человеческих конфликтов может быть не только противоречие между целями, которые различные люди ставят перед собой, но и человеческое взаимонепонимание, вызванное различием типов мышления. Достоинство описываемого подхода к изучению конфликтов заключается в возможности более тонкого проникновения в суть развития конфликтных ситуаций.

Литература

1. Дмитриев А. В. Конфликтология. - М.: ИИФРА-М, 2009. - 336 с.

2. Сысоев В. В. Конфликт. Сотрудничество. Иезависимость: системное взаимодействие в структурно-параметрическом представлении. - Москва: МАЭиП, 1999. - 151 с.

3. Светлов В. А. Аналитика конфликта. - СПб: Росток, 2001. - 512 с.

4. Левин В. И. Математическое моделирование систем с помощью динамических автоматов // Информационные технологии. 1997. № 9. С. 15-24.

5. Левин В. И. Математическое моделирование с помощью автоматов // Вестник Тамбовского университета. Серия: Естественные и технические науки. 1997. Т. 2. № 2. С. 67-72.

6. Левин В. И. Автоматная модель определения возможного времени проведения коллективных мероприятий // Известия РАИ. Теория и системы управления. 1997. № 3. С. 85-96.

7. Левин В. И. Математическое моделирование библии. Характеристический автоматный подход // Вестник Тамбовского университета. Серия: Естественные и технические науки. 1999. Т. 4. № 3. С. 353-363.

8. Левин В. И. Автоматное моделирование коллективных мероприятий // Автоматика и телемеханика. 1999. № 12. С. 78-89.

9. Левин В. И. Математическое моделирование библейской легенды о Вавилонском столпотворении // Вестник Тамбовского университета. Серия: Естественные и технические науки. 2001. Т. 6. № 2. С. 123-138.

10. Левин В. И. Автоматное моделирование исторических процессов на примере войн // Радиоэлектроника. Информатика. Управление. 2002. № 12. С. 93-101.

11. Левин В. И. Автоматное моделирование процессов возникновения и распада коллектива // Кибернетика и системный анализ. 2003. № 3. С. 92-101.

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

12. Левин В. И. Логико-алгебраический подход к моделированию конфликтов // Системы управления, связи и безопасности. 2015. № 4. С. 69-87. URL: http://sccs.intelgr.com/archive/2015-04/03-Levin.pdf (дата обращения 01.08.2016).

1. Dmitriev A .V. Konfliktologiia . Moscow, INFRA-M Publ., 2009. 336 p. (in Russian).

2. Sysoev V. V. Konflikt. Sotrudnichestvo. Nezavisimost": sistemnoe vzaimodeistvie v strukturno-parametricheskom predstavlenii . Moscow, MAEP Publ., 1999. - 151 p. (in Russian).

3. Svetlov V. A. Analitika konflikta . Saint-Petersburg, Burgeon Publ., 2001. 512 p. (in Russian).

4. Levin V. I. Mathematical modeling of systems with dynamic machines. Information technologies, 1997, no. 9, pp. 15-24 (in Russian).

5. Levin V. I. Mathematical modeling using automata. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 1997, vol. 2, no. 2, pp. 67-72. (in Russian).

6. Levin V. I. Automaton model determine the possible time of the collective actions. Izvestiya RAS. Theory and control systems, 1997, no. 3, pp. 85-96. (in Russian).

7. Levin V. I. Mathematical modeling of the Bible. Characteristic automata approach. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 1999, vol. 4, no. 3, pp. 353-363 (in Russian).

8. Levin V. I. Automatic modeling of collective actions. Automation and Remote Control, 1999, no. 12, pp. 78-89 (in Russian).

9. Levin V. I. Mathematical modeling of the biblical legend of the Tower of Babel. Bulletin of the University of Tambov. Series: Natural and Technical Sciences, 2001, vol. 6, no 2, pp. 123-138 (in Russian).

10. Levin V. I. Automatic modeling of historical processes on the example of the wars. Electronics. Computer science. Control, 2002, no. 12, pp. 93-101 (in Russian).

11. Levin V. I. Automatic modeling of processes of emergence and collapse of collective // Cybernetics and Systems Analysis, 2003, no. 3, pp. 92-101 (in Russian).

12. Levin V. I. Logical-Algebraic Approach to Conflicts Modeling. Systems of Control, Communication and Security, 2015, no. 4, pp. 69-87. Available at: http://sccs.intelgr.com/archive/2015-04/03-Levin.pdf (accessed 01 Aug 2016) (in Russian).

Левин Виталий Ильич - доктор технических наук, профессор, PhD, Full Professor. Заслуженный деятель науки РФ. Пензенский государственный технологический университет. Область научных интересов: логика;

Системы управления, связи и безопасности №3. 2016

Systems of Control, Communication and Security sccs.intelgr.com

математическое моделирование в технике, экономике, социологии, истории; принятие решений; оптимизация; теория автоматов; теория надежности; распознавание; история науки; проблемы образования. E-mail: [email protected]

Немкова Елена Анатольевна - кандидат технических наук, доцент кафедры «Математика». Пензенский государственный технологический университет. Область научных интересов: логика; математическое моделирование в технике и экономике. E-mail: [email protected]

Адрес: 440039, Россия, г. Пенза, пр. Байдукова/ул. Гагарина, д. 1 а/11.

Logical-Mathematical Modelling of Conflicts

V. I. Levin, E. A. Nemkova

Relevance. In the article the actual problem of adequate mathematical modeling of the behavior of the conflicting systems in relation to systems, conflicts are not necessarily related to the contradiction between the participants in the system. An exact statement of the problem of logical and mathematical modeling of the interaction between the conflicting parties of the system. The task is to build a two-valued algebra and multi-valued logic, simulating different types of thinking, and that difference is a source of conflict. The purpose of the article. The aim of the article is a summary and a detailed analysis of the two-valued and multi-valued logic, with a focus on finding the fundamental differences of the laws of logic, entailing significant differences in the thinking of individuals, based on these logics and the resulting differences in conflicts between carriers of different logics of thinking. Method. To solve this problem, we use the traditional method of construction of logical systems based on the introduction of basic elements of permanent, major operations on them and identify the laws that govern these operations. The main attention is paid to the differences of elements of operations on them and transactions between the laws of two-valued and multi-valued logic. Novelty. Formulated provision according to which there are systems, conflicts between the parties which are not caused by the contradictions of their interests and the difference of their logic thinking, the result of which is a misunderstanding, provoking suspicion, and then aggression. This so-called imaginary conflicts, the fight against which requires special approaches. Result. The procedure of constructing the algebra of logic different valence, adequately modeling the processes of thinking. We describe the two-valued and multi-valued logic thinking and their laws. Established the fundamental differences of two-valued and multi-valued logic. An example of the analysis of the conflict caused by the difference logic thinking.

Keywords: conflict, formal logic elements, logic operations, the laws of logic, statement, the two-valued logic, many-valued logic.

Information about Authors

Vitaly Ilyich Levin - the Doctor of Engineering Sciences, Professor, PhD, Full Professor. Honored worker of science of the Russian Federation. Penza State Technological University. Field of Research: logic; mathematical modeling in technics, economy, sociology, history; decision-making; optimization; automata theory; theory of reliability; history of science; problems of education. E-mail: [email protected]

Elena Anatolyevna Nemkova - Ph.D. of Engineering Sciences, Associate Professor at the Department of "Mathematics". Penza State Technological University. Field of Research: logic; mathematical modeling in technics, economy. E-mail:: elenem5 8 @mail. ru

Address: 440039, Russia, Penza, pr. Baydukova / Gagarin st., 1a/11.