Разыграть семь возможных значений дискретной случайной величины. Разыгрывание дискретных и непрерывных случайных величин. Плотность распределения СВ

ЛАБОРАТОРНАЯ РАБОТА ММ- 03

РАЗЫГРЫВАНИЕ ДИСКРЕТНЫХ И НЕПРЕРЫВНЫХ СВ

Цель работы: изучение и программная реализация методов разыгрывания дискретных и непрерывных СВ

ВОПРОСЫ ДЛЯ ИЗУЧЕНИЯ ПО КОНСПЕКТУ ЛЕКЦИЙ:

1. Дискретные случайные величины и их характеристики.

2. Разыгрывание полной группы случайных событий.

3. Разыгрывание непрерывной случайной величины методом обратной функции.

4. Выбор случайного направления в пространстве.

5. Стандартное нормальное распределение и его пересчет для заданных параметров.

6. Метод полярных координат для разыгрывания нормального распределения.

ЗАДАЧА 1. Сформулировать (письменно) правило разыгрывания значений дискретной СВ, закон распределения которой задан в виде таблицы. Составить подпрограмму-функцию для разыгрывания значений СВ с использованием БСВ, получаемых от подпрограммы ГСЧ. Разыграть 50 значений СВ и вывести их на экран.

Где N – номер варианта.

ЗАДАЧА 2. Дана функция плотности распределения f(x) непрерывной случайной величины X.

В отчете записать формулы и вычисление следующих величин:

А) константу нормировки;

Б) функцию распределения F(x);

В) математическое ожидание M(X);

Г) дисперсию D(X);

Д) формулу для разыгрывания значений СВ по методу обратной функции.

Составить подпрограмму-функцию для разыгрывания заданной СВ и получить 1000 значений этой СВ.

Построить гистограмму распределения полученных чисел по 20 отрезкам.

ЗАДАЧА 3. Составить процедуру, позволяющую разыграть параметры случайного направления в пространстве. Разыграть 100 случайных направлений в пространстве.

Использовать встроенный датчик псевдослучайных чисел.

Письменный отчет по лабораторной работе должен содержать:

1) Название и цель работы, группу, фамилию и номер варианта студента;

2) По каждой задаче: -условие, -необходимые формулы и математические преобразования, -имя программного файла, реализующего используемый алгоритм, -результаты вычислений.

Отлаженные программные файлы сдаются вместе с письменным отчетом.

ПРИЛОЖЕНИЕ

Варианты плотности распределения непрерывной СВ

Вар-т

Плотность распределения СВ

Вар-т

Плотность распределения СВ

Напомним предварительно, что если случайная величина R распределена равномерно в интервале (0,1), то ее математическое ожидание и дисперсия соответственно равны (см. гл. XII, § 1, замечание 3):

M (R )= 1/2, (*)

D (R )= 1/2. (**)

Составим сумму п независимых, распределенных рав­номерно в интервале (0,1) случайных величин R j (j =1, 2, ...,n):

Для нормирования этой суммы найдем предварительно ее математическое ожидание и дисперсию.

Известно, что математическое ожидание суммы слу­чайных величин равно сумме математических ожиданий слагаемых. Сумма (***) содержит п слагаемых, матема­тическое ожидание каждого из которых в силу (*) равно 1/2; следовательно, математическое ожидание суммы (*** )

Известно, что дисперсия суммы независимых случай­ных величин равна сумме дисперсий слагаемых. Сумма (***) содержит n независимых слагаемых, дисперсия каж­дого из которых в силу (**) равна 1/12; следовательно, дисперсия суммы (***)

Отсюда среднее квадратическое отклонение суммы (***)

Пронормируем рассматриваемую сумму, для чего выч­тем математическое ожидание и разделим результат на среднее квадратическое отклонение:

В силу центральной предельной теоремы при п→∞ распределение этой нормированной случайной величины стремится к нормальному с параметрами а= 0 и σ=1. При конечном п распределение прибли­женно нормальное. В частности, при п = 12 получим достаточно хорошее и удобное для расчета приближение

Правило. Для того чтобы разыграть возможное зна­чение x i нормальной случайной величины Х с парамет­рами а=0 и σ=1, надо сложить 12 независимых слу­чайных чисел и из полученной суммы вычесть 6:

Пример, а) Разыграть 100 возможных значений нормальной вели­чины Х с параметрами а=0 и σ=1; б) оценить параметры разыг­ранной величины.

Решение. а) Выберем 12 случайных чисел из первой строки таблицы *) , сложимих и из полученной суммы вычтем 6; в итоге имеем

x i =(0,10+0,09+...+0,67) - 6= - 0,99.

Аналогично, выбирая из каждой следующей строки таблицы пер­вые 12 чисел, найдем остальные возможные значения X.

б) Выполнив расчеты, получим искомые оценки:

Оценки удовлетворительные: а* близко к нулю, σ* мало отличается от единицы.

Замечание. Если требуется разыграть возможное значение z i , нормальной случайной величины Z с математическим ожиданием а и средним квадратическим отклонением σ , то, разыграв по пра­вилу настоящего параграфа возможное значение x i , находят искомое возможное значение по формуле

z i =σx i +a.

Эта формула получена из соотношения (z i -a )/σ=x i .

Задачи

1. Разыграть 6 значений дискретной случайной величины X, закон распределения которой задан в виде таблицы

X 3,2
p 0,18 0,24 0,58

Указание. Для определенности принять, что выбраны слу­чайные числа: 0,73; 0,75; 0,54; 0,08; 0,28; 0,53. Отв. 10; 10; 10; 2; 3; 22; 10.

2. Разыграть 4 испытания, в каждом из которых вероятность появления события А равна 0,52.

Указание. Для определенности принять, что выбраны слу­чайные числа: 0;28; 0,53; 0,91; 0,89.

Отв. А, , .

3. Заданы вероятности трех событий, образующих полную группу: Р (А 1)=0,20, Р (А 2)=0,32, Р (А 3 )= 0,48. Разыграть 6 испытаний, в каждом из которых появляется одно из заданных событий.

Указание. Для определенности принять, что выбраны слу­чайные числа: 0,77; 0,19; 0,21; 0,51; 0,99; 0,33.

Отв. А 3 , А 1 , А 2 , А 2 , А 3 , А 2 .

4. События А и В независимы и совместны. Разыграть 5 испы­таний, в каждом из которых вероятность появления события А равна 0,5, а события В- 0,8.

А 1 =АВ , для определенности принять случайные числа: 0,34; 0,41; 0,48; 0,21; 0,57.

Отв. А 1 , А 2 , А 2 , А 1 , А 3 .

5. События А, В, С независимы и совместны. Разыграть 4 испы­тания в каждом из которых вероятности появления событий заданы: Р (А )= 0,4, Р (В )= 0,6, Р (С )= 0,5.

Указание. Составить полную группу событий: для определенности принять, что выбраны случайные числа: 0,075; 0,907; 0,401; 0,344.

Отв.А 1 , А 8 , А 4 , А 4 .

6. События А и В зависимы и совместны. Разыграть 4 испытания, в каждом из которых заданы вероятности: Р (А )=0,7, Р (В )=0,6, Р (АВ )=0,4.

Указание. Составить полную группу событий: А 1 =АВ , для определенности принять случайные числа: 0,28; 0,53; 0,91; 0,89.

Отв. А 1 , А 2 , А 4 , А 3 .

7. Разыграть 3 возможных значения непрерывной случайной величины X, которая распределена по показательному закону и задана функцией распределения F (х )= 1 - е -10 x .

Указание. Для определенности принять, что выбраны слу­чайные числа: 0,67; 0,79; 0,91.

Отв. 0,04; 0,02; 0,009.

8. Разыграть 4 возможных значения непрерывной случайной величины X, распределенной равномерно в интервале (6,14).

Указание. Для определенности принять, что выбраны слу­чайные числа: 0,11: 0,04; 0,61; 0,93.

Отв. 6,88; 6,32; 10,88; 13,44.

9. Найти методом суперпозиции явные формулы для разыгрывания непрерывной случайной величины X, заданной функцией рас­пределения

F (x )=1- (1/3)(2е- 2 x +е -3 x:), 0<х <∞.

Отв. х= - (1/2)1п r 2 , если r 1 < 2/3; х = - (1/3)1п r 2 , если r 1 ≥2/3.

10. Найти явную формулу для разыгрывания непрерывной слу­чайной величины X, заданной плотностью вероятности f (х )=b /(1 +ax ) 2 в интервале 0≤x ≤1/(b-a ); вне этого интервала f(x)=0.

Отв. х i = - r i /(b - ar i ).

11. Разыграть 2 возможных значения нормальной случайной величины с параметрами: а) а =0, σ =1; б) а =2, σ =3.

Указание. Для определенности принять случайные числа (далее указано число сотых долей; например, числу 74 соответствует слу­чайное число r 1 =0,74): 74. 10, 88, 82. 22, 88, 57, 07, 40, 15, 25, 70; 62, 88, 08, 78, 73, 95, 16, 05, 92, 21, 22, 30.

Отв. а) x 1 = - 0,22, x 2 = - 0.10; 6) z 1 =1,34, z 2 =2,70.

Глава двадцать вторая

Обозначим равномерно распределенную СВ в интервале (0, 1) через R, а ее возможные значения (случайные числа) - r j .

Разобьем интервал }