Формулы белков и их названия. Протеиноиды. Объяснение и выводы

Под понятием «белок» следует подразумевать активные вещества, имеющие в своем составе заменимые и незаменимые аминокислоты. Именно они способны обеспечить человеческий организм необходимым запасом энергии. Белки поддерживают баланс многих метаболических процессов. Ведь они являются наиболее важной составляющей живых клеток. И необходимо выяснить, белки - это какие продукты?

Полезные свойства

Белок считается одним из наиболее важных элементов для развития костей, мышц, связок и тканей. Описанное вещество помогает организму бороться с различными заболеваниями и инфекциями, улучшая состояние иммунитета. Поэтому человеку необходимо употреблять в пищу белок. В каких продуктах находится оговоренное вещество, будет рассмотрено ниже.

Белок просто необходим для протекания таких процессов, как обмен веществ, пищеварение и кровообращение. Человеку нужно постоянно употреблять данный компонент, чтобы его тело могло вырабатывать гормоны, ферменты и прочие полезные вещества. Недостаточное употребление этого биологического "строительного материала" может спровоцировать уменьшение объема мышц, вызвать слабость, головокружения, дисфункцию сердца и пр. Не допустить этого возможно, лишь четко уяснив: белки - это какие продукты?

Оптимальная доза употребления в сутки

В течение дня человеческому организму необходимо от 0,8 до 2,0 грамм белка на 1 килограмм веса тела. Спортсменам же следует несколько увеличить оговоренную дозу, доведя количество потребляемого протеина до 2-2,5 грамм белка на 1 килограмм веса. Как утверждают специалисты, средний показатель приема вышеназванного вещества за один раз должен равняться 20-30 граммам.

Перед тем как планировать свой рацион, нужно определить: белки - это какие продукты? Удивительно, но вышеназванный компонент можно обнаружить практически в любой пище.

Вся еда содержит Какие продукты ни возьми на анализ, содержание вышеназванных компонентов варьируется лишь в процентном соотношении. Такие показатели обуславливают то, что люди отдают предпочтение той или иной пище.

Итак, белок можно обнаружить практически в любом продукте. Однако в обычной пище, наряду с протеинами, могут содержаться также и жиры с углеводами. Подобный факт играет на руку спортсменам, нуждающимся в большом количестве калорий, однако нежелателен для тех людей, которые стремятся похудеть. Для качественного построения тела требуется немалый объем именно белка.

Типы белковых соединений

В природе белок встречается в двух видах продуктов - в растительных и животных. Протеин классифицируется согласно происхождению. Принимая в пищу лишь растительный белок (в каких продуктах содержится данный компонент, рассмотрим ниже), следует учитывать потребность в достаточно большом количестве еды, обогащенной вышеупомянутым веществом. Эта информация станет полезной вегетарианцам. Его необходимо на 10% больше, нежели при рационе, содержащем животные белки.

В каких продуктах присутствует большое количество нужного вещества? Рассмотрим это.

Животные белки

В каких продуктах содержится вышеназванное вещество? Это пища мясная и молочная. Такие продукты имеют оптимальное количество протеина в своем составе. В них присутствует весь спектр аминокислот незаменимого типа. Сюда следует отнести следующее:

  • птицу;
  • яйца;
  • молоко;
  • сыворотку;
  • морепродукты.

Растительный белок

В каких продуктах имеется данный протеин? К ним относятся бобы, фрукты, а также овощи. Вышеприведенные составляющие рациона являются отличным источником белковых волокон для организма. Однако здесь необходимо отметить, что подобные продукты не обладают в полной степени той ценностью, которой наделена пища животного происхождения.

Питательные ингредиенты, присутствующие в представителях растительного мира, способны оказать положительное воздействие на состояние волос и кожи человека. Фрукты можно есть в сыром виде, использовать их в качестве добавок для салата и пр. Кроме оптимального набора аминокислот, в них присутствуют клетчатка и жиры.

Остановимся на перечне составляющих рациона, в которых находится наибольшее количество оговоренного компонента? Список, приведенный ниже, позволит ответить на этот вопрос.

Рыба и мясные продукты

Начинает наш список животный белок. В каких продуктах - наибольшее его содержание?

  • Рыба морская, речная:

Лососина: имеет повышенную концентрацию белка - 30 грамм на 100 единиц; оказывает положительное воздействие на сердечно-сосудистую систему, а также иммунитет;

Тунец: в 100 граммах озвученного вида рыбы присутствует 24,4 грамма протеина;

Карп: 20 грамм белка;

Сельдь: 15 грамм;

Щука: 18 грамм;

Окунь: 19 грамм;

Хек: 16 грамм.

  • Крольчатина - считается наиболее В ней содержится малое количество жиров. В 200-граммовой порции такого мяса находится 24 грамма чистого белка. Помимо этого, крольчатина богата никотиновой кислотой (примерно 25% от суточной нормы потребления).
  • Говядина постная - больше всего белка здесь содержится в огузке и филейной части. В 200 граммах этого мяса насчитывается около 25 грамм протеина. Коровье мясо также богато линолевой кислотой и цинком.
  • Яичный белок и цельные яйца. Оговоренные продукты характеризуются полным набором аминокислот незаменимого типа. Так, в куриных яйцах насчитывают 11,6 грамм протеина. А в перепелиных - 11,8 грамм. Белок, содержащийся в яйцах, имеет малый процент жира, отлично усваивается. Также данный продукт может похвастать наличием большого количества витаминов и минералов. Помимо этого, в яичном белке имеется немалая доля зеаксантина, лютеина и каротиноидов.
  • Индейка и куриные грудки. В 100-граммовой порции такого мяса содержится примерно 20 грамм белка. Исключением становятся крылышки и ножки. Индейка и курица также являются диетическими продуктами.

Крупы

Белковые соединения, присутствующие в растениях, нельзя причислить к разряду полноценных веществ. Исходя из этого, следует отметить, что наилучшее действие на организм может оказать комбинирование бобовых культур и круп. Подобный прием позволит получить наиболее полный спектр аминокислот.

  • Крупа - состоит из цельных зерен. Их обрабатывают паром, просушивают. И измельчают до консистенции крупы. Встречается несколько сортов подобного продукта, богатых белком:

Гречневая крупа - 12,6 грамм протеина;

Пшено - 11,5 грамм;

Рис - 7 грамм;

Перловая крупа - 9 грамм;

Ячменная крупа - 9,5 грамм.

  • Овсяные хлопья и отруби - способны оказывать благоприятное действие на состояние крови, снижая уровень холестерина в ней. Продукты, изготовленные из подобных ингредиентов, богаты магнием и белками (в 100 г имеется 11 грамм чистого протеина).

Бобовые культуры

Не удивительно, что многие представители дальневосточных народов предпочитают сою и фасоль. Ведь в таких культурах имеется немалое количество белка. При этом в сое практически не присутствуют жиры мононасыщенного типа и холестерин.

  • Бобы - как правило, в такой пище содержатся витамины РР, А, С, В6 и В1, некоторые минералы - фосфор и железо. В половине чашки (100 г) готового продукта насчитывается 100-150 же - около 10 грамм.
  • Чечевица - 24 грамма.
  • Нут - 19 грамм.
  • Соя - 11 грамм.

Молочные продукты

Если говорить о пище, содержащей животный белок (в каких продуктах он имеется, представлено ниже), невозможно не коснуться данной категории:

  • Продукты молочного типа. По усвояемости на первом месте здесь стоят обезжиренные разновидности. Перечислим их:

Простокваша - 3 грамма;

Мацони - 2,9 грамма;

Молоко - 2,8 грамма;

Ряженка - 3 грамма;

Сыры - от 11 до 25 грамм.

Семена и орехи

  • Киноа - злак южноамериканского происхождения, по структуре отдаленно напоминает семена кунжутного дерева. В таком продукте имеется в немалых количествах: магний, железо, медь и марганец. Белковая составляющая находится на отметке 16 грамм.
  • Орехи грецкие - 60 грамм.
  • Семена чиа - 20.
  • Семена подсолнечника - 24.

Фрукты и овощи

Такие составляющие рациона способны похвастать оптимальным соотношением витаминов С и А. В них имеется и селен. Калорийность и жирная составляющая в этих продуктах весьма низкие. Итак, вот основные продукты, имеющие высокое содержание белка:

  • брокколи;
  • перец красный;
  • лук репчатый;
  • спаржа;
  • помидоры;
  • клубника;
  • листовая капуста и пр.

Белки и углеводы

На сегодняшний день существует множество диет. Они, как правило, базируются на правильной комбинации белков, жиров и углеводов. Взять хотя бы диету Аткинса. Это достаточно известный безуглеводный рацион питания. Внимательно изучая рекомендации, каждый читатель задает закономерный вопрос: "Это какие продукты? Белки и углеводы где присутствуют?" Ниже рассмотрим основные продукты с точки зрения содержания данных веществ:

  1. Мясо. В данном продукте совсем нет углеводов, однако сложный процесс его обработки посредством приправ, соли и сахара может несколько изменить его состав в готовом виде. Именно поэтому колбасу, ветчину и другие полуфабрикаты нельзя отнести к еде, богатой оговоренными веществами. Достаточно же высокая концентрация протеинов наблюдается в телятине, индейке, говядине, свинине, баранине, рыбе и пр.
  2. В молоке и всех производных от него продуктах присутствуют моносахариды. Сливки вместе с сырами (жирными) характеризуются малым содержанием углеводов.

Продукты с низким содержанием белка

Пища с невысоким содержанием протеина не может оказать такого благотворного действия на организм, как полноценные ингредиенты. Однако исключать их из рациона полностью не рекомендуется.

Итак, в каких продуктах мало белка:

  • мармелад - 0 грамм;
  • сахар - 0,3 грамма;
  • яблоки - 0,4 грамма;
  • малина - 0,8 грамм;
  • сыроежки необработанные - 1,7 грамма;
  • чернослив - 2,3 грамма.

Продолжать список можно еще очень долго. Здесь же мы выделили наиболее бедную по содержанию белка пищу.

Заключение

Ответив на вопрос "белки - это какие продукты", надеемся, что вы полностью понимаете, насколько важно организму получать сбалансированное питание. Поэтому необходимо помнить, что, как бы ни были полезны белки, в жирах и углеводах человек также нуждается.

Формирование новых знаний. Лекционный блок.

План изучения темы:

1.Роль белков в организме, природные источники белков.

2.Состав и строение белков.

3.Функции белков.

4.Физические и химические свойства белков.

5.Синтез белков.

6.Превращения белков в организме

Из органических веществ, входящих в живую клетку, важнейшую роль играют белки. На их долю приходится около 50% массы клетки. Благодаря белкам организм приобрел возможность двигаться, размножаться, расти, усваивать пищу, реагировать на внешние воздействия и т. д.

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка», – писал Энгельс в своих трудах.

Белки – необходимые компоненты пищевых продуктов, они входят в состав лекарственных препаратов.

Белок – важный компонент пищи человека. Основные источники пищевого белка: мясо, молоко, продукты переработки зерна, хлеб, рыба, овощи. Потребность в белке зависит от возраста, пола, вида деятельности. В организме здорового человека должен быть баланс между количеством поступающих белков и выделяющимися продуктами распада. Для оценки белкового обмена введено понятие белкового баланса. В зрелом возрасте у здорового человека существует азотное равновесие, т.е. количество азота, полученного с белками пищи равно количеству выделяемого азота. В молодом, растущем организме идет накопление белковой массы, поэтому азотный баланс будет положительный, т.е. количество поступающего азота превышает количество выводимого из организма. У людей пожилого возраста, а также при некоторых заболеваниях наблюдается отрицательный азотный баланс. Длительный отрицательный азотный баланс ведет к гибели организма.

Необходимо помнить, что некоторые аминокислоты при тепловой обработке, длительном хранении продуктов могут образовывать неусвояемые организмом соединения, т.е. становиться “недоступными”. Это снижает ценность белка.

Животные и растительные белки усваиваются организмом неодинаково. Если белки молока, молочных продуктов, яиц усваиваются на 96%, мяса и рыбы – на 93–95%, то белки хлеба – на 62–86%, овощей – на 80%, картофеля и некоторых бобовых – на 70%. Однако смесь этих продуктов может быть биологически более полноценной.

На степень усвоения организмом белков оказывает влияние технология получения пищевых продуктов и их кулинарная обработка. При умеренном нагревании пищевых продуктов, особенно растительного происхождения, усвояемость белков несколько возрастает. При интенсивной тепловой обработке усвояемость снижается.


Суточная потребность взрослого человека в белке разного вида 1–1,5 г на 1 кг массы тела, т.е. приблизительно 85–100 г. Доля животных белков должна составлять приблизительно 55% от общего его количества в рационе.

2. Строение белков .

Многие органические соединения, входящие в состав клетки, характеризуются большими размерами молекул. Как называются такие молекулы? (макромолекулы) Они состоят обычно из повторяющихся сходных по строению низкомолекулярных соединений, связанных между собой ковалентными связями. Их строение можно сравнить с бусинками на нити. Как называются эти составные элементы? (Мономеры). Они образуют полимеры. Большинство полимеров построено из одинаковых мономеров. Такие мономеры называются регулярными. Например, если А – мономер, то –А-А-А-…….А- полимер. Полимеры, в которых мономеры различны по строению, называются нерегулярными. Например, -А-В-Р-П-А-……Г-Р-П-А-. Состав определяет их свойства.

Белки – нерегулярные полимеры, мономерами которых являются аминокислоты.

Белки – это сложные высокомолекулярные природные соединения, построенные из -аминокислот. В состав белков входит 20 различных аминокислот, отсюда следует огромное многообразие белков при различных комбинациях аминокислот. Как из 33 букв алфавита мы можем составить бесконечное число слов, так из 20 аминокислот – бесконечное множество белков. В организме человека насчитывается до 100000 белков.

В состав большинства белков входят 300–500 аминокислотных остатков, но есть и более крупные белки, состоящие из 1500 и более аминокислот. Белки различаются и составом аминокислот и числом аминокислотных звеньев, и особенно порядком чередования их в полипептидных цепях. Расчет показывает, что для белка, построенного из 20 различных аминокислот, содержащего в цепи 100 аминокислотных остатков, число возможных вариантов может составить 10130. Многие белки велики и по длине, и по молекулярной массе.

Инсулин –5700

Рибонуклеаза –12700

Альбумин-36000

Гемоглобин-65000

Белки должны быть при такой массе длинными нитями. Но их макромолекулы имеют формулу компактных шаров (глобул) или вытянутых структур (фибрилл).

Белки подразделяют на протеины (простые белки) и протеиды (сложные белки). Число аминокислотных остатков, входящих в молекулы, различно, например: инсулин – 51, миоглобин – 140. Отсюда Mr белка от 10 000 до нескольких миллионов.

Первая гипотеза о строении молекулы белка была предложена в 70-х годах XIX в. Это была уреидная теория строения белка. В 1903 г. Немецкий ученый Э.Г.Фишер предложил пептидную теорию, которая стала ключом к тайне строения белка. Фишер предположил, что белки представляют собой полимеры из остатков аминокислот, соединенных пептидной связью NH–CO. Идея о том, что белки – это полимерные образования, высказывалась еще в 1888 г. Русским ученым А.Я.Данилевским. Эта теория получила подтверждение в последующих работах. Согласно полипептидной теории белки имеют определенную структуру

Многие белки состоят из нескольких полипептидных частиц, которые складываются в единый агрегат. Так, молекула гемоглобина (С738Н1166S2Fe4O208) состоит из четырех субъединиц. Отметим, что Mr белка яйца = 36 000, Mr белка мышц = 1 500 000.

Первичная структура белка – последовательность чередования аминокислотных остатков, осуществляется за счет пептидных (амидных) связей, все связи ковалентные, прочные.

Вторичная структура – форма полипептидной цепи в пространстве. Белковая цепь закручена в спираль, осуществляется за счет множества водородных связей.

Третичная структура – реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль Третичная структура – клубок из полипептидной спирали. (Демонстрация клубка из эластичного шнура).

Представить конфигурацию легко, труднее понять, какие силы ее поддерживают. (Водородные связи, дисульфидные мостики –S-S-, сложноэфирная связь между радикалами. Полярные группы COOH и OH взаимодействуют с водой, а неполярные радикалы отталкивают ее, они направлены внутрь глобул. Радикалы взаимодействуют между собой благодаря силам Ван-дер-Ваальса.) (за счет гидрофобных связей), у некоторых белков – S–S-связи (бисульфидные мостики), сложноэфирные мостики..

Четвертичная структура – соединенные друг с другом макромолекулы белков образуют комплекс. Четвертичная структура – структура из нескольких полипептидных цепей

Тема: Белки - природные биополимеры

“Меняя каждый миг свой образ прихотливый,
капризна, как дитя, и призрачна, как дым,

кипит повсюду жизнь в тревоге суетливой,
великое смешав с ничтожным и смешным…”

С.Я. Надсон

Методическая информация

Тип занятия

Интегрированный (биология + химия)

проблемно-исследовательский мультимедиа урок

Формировать у обучающихся представление о свойствах и функциях белков в клетке и организме

Обучающие:

дать понятие о белках - природных биополимерах, их многообразных функциях, химических свойствах белков;

формировать знания об уникальных особенностях строения белков;

углубить знания о взаимосвязи строения и функции веществ на примере белков;

учить обучающихся, использованию знаний смежных предметов для получения более полной картины мира.

Развивающие:

развитие познавательного интереса, установление межпредметных связей;

совершенствовать умения анализировать, сравнивать, устанавливать взаимосвязь между строением и свойствами.

Воспитательные:

показать материальное единство органического мира;

формирование научного мировоззрения;

Метод проблемного изложения, частично-поисковый, эвристический, исследовательский

Функция преподавателя:

Управляющий поисковой работой обучающихся, консультант

Знания, умения, навыки и компетенции, которые обучающиеся актуализируют, приобретут, закрепят в ходе занятия:

Формируются такие мыслительные операции, как: сравнение свойств белка, классификация структур белковой молекулы, сравнительный анализ функций белка.

Основные понятия: Аминокислоты, пептидная связь, полипептид, структура белка, функции белка, свойства белка, денатурация.

Основные навыки:

Работа с химическим оборудованием, работа по выявлению активности каталазы

Необходимое оборудование и материалы:

Компьютер, презентация по теме урока.

Эксперимент: пробирки, штативы, спиртовка, держатель.

Реактивы и материалы: р-р Белка куриного яйца, азотная кислота, р-р сульфата меди(II), щелочь, раствор 3% перекиси водорода, сырой и вареный картофель или мясо.

Ведущий тип деятельности:

Продуктивный, творческий, проблемный

Технологическая карта занятия

Мотивация:

Как изучение этой темы может вам помочь в вашей будущей профессии?

Ход занятия:

Организационный момент

“Белки, жиры и углеводы,
Пройдут века, эпохи годы,
К вам мы прикованы на век,
Без вас немыслим человек”

Актуализация знаний

А знаете ли Вы:
1 .Белок никогда не переходит в жир - совет врача диетолога.
2 . Образование морщин связано с уменьшением натурального белка коллагена и впрыскиванием его в верхний слой кожи коллаген возмещается. Почти все мелкие и крупные морщины можно корректировать этой терапией - совет врача косметолога.
3 . Современное название белков- ферментов (энзимы).
4 . Выработка иммунитета - это важная защитная функция белка. Диета снижает иммунитет.
5 . Изучение белков позволило ответить на вопросы, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.
6 .Все белки в организме человека постоянно разрушаются и синтезируются. Период полураспада белков в теле человека 80 дней, в мышцах, коже, мозгу ― 180 дней, в сыворотке крови и печени ― 10 дней, у ряда гормонов он исчисляется часами и даже минутами (инсулин).
7 . Каждый вид обладает собственными видами белков. Если бы в белке не было бы заложено этого качества, то не было бы такого разнообразия жизненных форм, к которым относимся и мы.

8. Как появилась жизнь на Земле? Что лежит в основе жизни?

Вот сегодня мы об этом и будем вести речь.

План занятия:

Определение.

Функции белков.

Состав и строение белков.

Структура белков.

Химические свойства белков.

6. Превращение белков в организме.

Проблемный вопрос?

Как строение белка может быть связано с его свойствами и функциями?

Гипотеза:

Примеры белков

История открытия:

Состав белков

Определение

Понять, каким образом белки осуществляют перечисленные выше многообразные функции, непросто. Единственный способ приблизиться к решению этой задачи - узнать, из чего построен белок, как расположены структурные элементы, составляющие его молекулу, по отношению друг к другу и в пространстве, как они взаимодействуют друг с другом и веществами внешней среды, т.е. изучить строение и свойства белков.

Раскрыть причинно- следственную зависимость:

функции - строение.

белки - полимеры,

мономеры - аминокислоты

Назовите известные вам белки, укажите их местонахождение?
(кератин - рога, шерсть, коллаген - кожа, гемоглобин - кровь
фибрин, фибриноген - кровь, пепсин - желудочный сок,
трипсин - поджелудочный сок, миозин - мышцы,

глобулин - вакцина, родопсин - зрительный пурпур,
птиалин - слюна, инсулин - поджелудочная железа,
казеин -молоко, альбумин - яичный белок)

В середине 19 века положено начало изучения белков, но только через 100 лет учёные систематизировали белки, определи их состав, а также сделали вывод, что белки - это главный компонент живых организмов.

А.Я. Данилевский - наличие в белке пептидной связи

Э.Фишер - синтезировал соединения белка

Химический состав белка может быть представлен следующими данными: С -55%, О - 24%, Н - 7,3%, N - 19%, S -2,4%.

На долю белков приходится более 50% общей массы органических соединений животной клетки: в мышцах - 80%, в коже - 63%, в печени - 57%, в мозге - 45%, в костях -28%

Химические формулы некоторых белков :

Пенициллин С16Н18О4N2

Казеин С1864Н3021О576N468 S2

Гемоглобин С3032Н4816 О872N780S8Fе4

- Давайте дадим определение термину БЕЛОК

БЕЛКИ - биополимеры нерегулярного строения, мономерами которого являются 20 аминокислот разных типов. В химический состав аминокислот входят: С, О, Н, N, S. Белковые молекулы могут образовывать четыре простраственные структуры и выполняют в клетке и организме целый ряд функций: строительную, каталитическую, регуляторную, двигательную, транспортную

Функции белков

- Белки - основа живого на Земле, входят в состав кожи, мышечной и нервной ткани, волос, сухожилий, стенок сосудов животных и человека; это строительный материал клетки. Роль белков трудно переоценить, т.о. жизнь на нашей планете действительно можно рассматривать как способ существования белковых тел, осуществляющих обменом веществ и энергией с внешней средой.

Поскольку белок содержит разнообразные функциональные группы, он не может быть отнесен к какому-нибудь из ранее изученных классов соединений. В нем как в фокусе сочетаются признаки соединений, относящихся к различным классам. Отсюда его многообразие. Это в сочетании с особенностями его структуры и характеризует белок как высшую форму развития вещества.

Структура белка

Составить конспект и ответить в процессе беседы на вопросы:

Остатки каких аминокислот входят в состав молекул белка? (см.прил.)

За счёт каких функциональных групп аминокислот происходит соединение их друг с другом?

Что понимают под «первичной» структурой белка?

Что представляет собой «вторичная» структура белка? Какие связи её удерживают?

Что такое «третичная» структура? За счет, каких связей она образуется?

В чем особенность четвертичной структуры?

(В виде линейной последовательности аминокислот)

-Что собой представляет первичная структура белка? Какие связи стабилизируют вторичную структуру? (Пространственная конфигурация белковой молекулы свернутые в виде спирали. В формировании спиральной конфигурации полипептидной цепи играют роль водородные связи между -С=О и -N-H группами.. )

- Что собой представляет третичная структура белка ? то конфигурация в виде закрученной вспираль полипептидной цепи. Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, между атомами серы образуется дисульфидный мостик, между карбоксильной и гидроксильной группами имеется сложноэфирный мостик, а между карбоксильной и аминогруппами может возникнуть солевой мостик. Для этой структуры характерны и водородные связи).

- Что собой представляет четвертичная структура белка? (Некоторые белковые макромолекулы могут соединяться друг с другом и образовывать относительно крупные агрегаты- макромолекулы белка).

Какие химические свойства будут характерны для белков? (Амфотерность связана с наличием в молекуле белка катионообразующих групп - аминогрупп и анионообразующих - карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преобладают карбоксильные группы, то заряд молекулы - отрицательный (проявляются свойства слабой кислоты), еслиаминогруппы - то положительный (основные свойства)).

Название структуры

Что собой представляет

Какими связями поддерживается

1. первичная

линейная цепь

пептидные

2. вторичная

полипептидная цепь в виде спирали

водородные связи

3. третичная

трехмерная конфигурация из закрученной спирали

дисульфидные мостики, сложноэфирные связи, водородные связи, амидные связи

4. четвертичная

объединение нескольких трёхмерных структур в одно целое

взаимодействие отдельных полипептидных цепей

Химические свойства белков

Для белков характерны реакции, в результате которых выпадает осадок. Но в одних случаях полученный осадок при избытке воды растворяется, а в других - происходит необратимое свертывание белков, т.е. денатурация.

Происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы под влиянием внешних факторов: температура, действия химических реагентов, механического воздействия.

При денатурации изменяются физические свойства белка, снижается растворимость, теряется биологическая активность

К чему может привести денатурация?

Нарушение антигенной чувствительности белка;

Блокирование ряда иммунологических реакций;

Нарушение обмена веществ;

Воспаление слизистой оболочки ряда органов пищеварения (гастриты, колит);

Камнеобразование (камни имеют белковую основу).

Также для белков характерны:

Свертывание белков при нагревании

Осаждение белков солями тяжелых металлов и спиртом

Белки горят с образованием азота, углекислого газа и воды, а также некоторых других веществ. Горение сопровождается характерным запахом жженых перьев.

Белки подвергаются гниению (под действием гнилостных бактерий), при этом образуются метан (CH4), сероводород (H2S), аммиак (NH3), вода и другие низкомолекулярные продукты.

Амфотерность

Строение АК в общем виде:

NH2-CH- COOH, где R - углеводородный радикал.

СООН - карбоксильная группа / кислотные свойства/.

NН2 - аминогруппа / основные свойства/.

Процесс восстановления структуры белка называется ренатурацией

Превращения белков в организме.

Белки пищи → полипептиды → α-аминокислоты → белки организма

Как ведет себя белок по отношению к воде?

Гидролиз

Гидролиз белка - разрушение первичной структуры белка под действием кислот, щелочей или ферментов, приводящее к образованию α- аминокислот, из которых он был составлен.

Белки - Альбумозы - Дипептиды - Аминокислоты

Качественные, цветные реакции на белок

Ксантопротеиновая реакция - реакция на ароматические циклы.

Белок + HNO3(к) → белый осадок → желтая окраска → оранжевая окраска + NH3

Как с помощью ксантопротеиновой реакции можно отличить натуральные шерстяные нитки от искусственных?

Биуретовая реакция - реакция на пептидные связи.

Белок + Cu(OH)2 → фиолетовая окраска раствора

Можно ли с помощью химии решить проблему дефицита белковой пищи?

Должна медленно появиться розово-фиолетовая или пурпурная окраска. Это реакция на пептидные связи в соединениях. В присутствии разбавленного раствора Си в щелочной среде атомы азота пептидной цепи образуют окрашенный в пурпурный цвет комплекс с ионами меди (II). Биурет (производное мочевины) тоже содержит группу CONH - и поэтому дает эту реакцию.

Функции белка

Эвристическая

картинка

Харак-теристика

Пример

Функция

Белки мембран

протеиды

Освободившаяся энергия используется на поддержание процессов жизнедеятельности организма.

тическая

управляют активностью ферментов.

Удлинение и укорочение мышц

Выработка специальных защитных белков - антител.

Механизм сопротивления возбудителям заболеваний называют иммунитетом.

Антитела- иммуно

глобулины

Защитная

Расщепление и окисление поступающих извне питательных веществ и прочее.

тическая

Домашняя работа

Один стакан цельного молока содержит 288 мг кальция. Сколько нужно выпивать в день молока для снабжения вашего организма достаточным количеством этого элемента? Суточная потребность 800 мг Са.

(Ответ. Для удовлетворения суточной потребности в кальции взрослый мужчина должен выпивать в день 2,7 стакана молока: 800 мг Са*(1 стакан молока/ 288 Са) = 2,7 стакана молока).

В куске белого пшеничного хлеба 0,8 мг железа. Сколько кусков нужно съедать в день для удовлетворения суточной потребности в этом элементе. (Суточная потребность в железе 18 мг). (Ответ. 22,5 кусочка)

18 мг.: 0,8= 22,5

Закрепление изученного материала

Игра «Подними руку, если согласен»

Сейчас вы будете выполнять задание по изученной теме в виде теста.

(Во время проверки обучающиеся меняются своими работами и оценивают работу соседа. Варианты правильных ответов на доске. По окончании проверки каждый выставляет оценку соседу)

- Какая структура является самой прочной? Почему?
Ответ: Первичная, т.к. связи прочные, ковалентные.
Именно при помощи радикалов реализуется одно из выдающихся свойств белков - их необыкновенная многогранная химическая активность. (причинно- следственные связи: функции - строение- конфигурация - свойства).

-Как можно с помощью проволоки, бус показать образование вторичной, третичной, четвертичной структур белка . За счет каких связей, взаимодействий это происходит?

А теперь с помощью теста проверим, как вы усвоили материал.

На ответ «Да» поднимаете руку.

1. В состав белков входят аминокислоты, прочно связанные между собой водородными связями (Нет)

2. Пептидной называют связь между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты. (Да)

3. Белки составляют основную часть органических веществ клетки. (Да)

4.Белок - мономер. (Нет)

5. Продукт гидролиза пептидных связей - вода. (Нет)

6. Продукты гидролиза пептидных связей - аминокислоты. (Да)

7. Белок - макромолекула. (Да)

8. Катализаторы клетки - это белки. (Да)

9. Существуют белки, переносящие кислород и углекислый газ. (Да)

10. Иммунитет не связан с белками. (Нет)

Высказывания о жизни и белках знаменитых людей

«Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом».

Ф.Энгельс «Анти-Дюринг»

Знаменитый путешественник и естествоиспытатель Александр Гумбольдт еще на пороге 19 века давал такое определение жизни:

«Жизнь есть способ существования белковых тел, существенным моментом которого является постепенный обмен веществ с окружающей их внешней природой; причем с прекращением этого обмена веществ прекращается и сама жизнь, что приводит к разложению белка».

Определение, данное Ф.Энгельсом в работе«Анти-Дюринг», позволяет задуматься над тем, как современная наука представляет процесс жизни.

«Жизнь - это переплетение сложнейших химических процессов взаимодействия белков между собой и другими веществами».

Приложение № 1

Функции белков.

Каталитическая функция

Белок как фермент: Ферменты - белки, обладающие каталитической активностью, т.е. ускоряющие протекание реакций. Все ферменты катализируют только одну реакцию. Заболевания, вызываемые ферментной недостаточностью.

Пример: неперевариваемость молока (нет фермента лактазы); гиповитаминозы (витаминная недостаточность)

Определение активности ферментов в биологических жидкостях имеет большое значение для диагностики заболевания. Например, по активности ферментов в плазме крови определяют вирусный гепатит.

Ферменты используют как реактивы при диагностике некоторых заболеваний.

Ферменты используют для лечения некоторых болезней. Примеры: панкреатин, фестал, лидаза.

Ферменты используются в промышленности: при приготовлении безалкогольных напитков, сыров, консервов, колбас, копченостей.

Ферменты используются при обработке льна, конопли, для смягчения кожи в кожевенной промышленности, они входят в состав стиральных порошков.

Структурная функция

Белки являются структурным компонентом многих клеток. Например, мономеры актина итубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму.Коллаген и эластин — основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти,перья птиц и некоторые раковины.

Защитная функция

Существуют несколько видов защитных функций белков:

Физическая защита. В ней принимает участие коллаген — белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы)); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса.

Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играютферментыпечени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атакупатогенов

Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируюттранскрипцию, трансляцию, а также активность других белков и др.

Регуляторную функцию белки осуществляют либо за счёт ферментативной активности), либо за счёт специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов.

Сигнальная функция

Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Транспортная функция

Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессыметаболизма.

Рецепторная функция

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях — свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы — белок-рецептор — происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты.

Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт создайте презентацию

Коды пищевых добавок

Е103, Е105, Е111, Е121, Е123,Е125,Е126, Е130, Е152.

2. Подозрительные

Е104, ЕЕ122, Е141, Е150, Е171, Е173, Е180, Е241, Е477.

3. Опасные

Е102, Е110, Е120, Е124,. Е127.

4.Канцерогенные

Е131,Е210-Е217,Е240, Е330.

5. Вызывающие расстройства кишечника

6. Вредные для кожи

7. Вызывающие нарушение давления

8. Провоцирующие появление сыпи

9. Повышающие уровень холестерина

10. Вызывающие расстройство желудка

Е338 Е341, Е407, Е450, Е461 - Е466

Практическая работа

Тема: «Химические свойства белков. Качественные (цветные) реакции на белки».

Цель : Изучить химические свойства белков. Познакомиться с качественными реакциями на белки. Активность фермента каталазы в живых и мертвых тканях..

«Денатурация белков»

Порядок выполнения.

Приготовьте раствор белка.

В пробирку налейте 4-5 мл раствора белка и нагрейте до кипения.

Отметьте изменения.

Охладите содержимое пробирки и разбавьте водой.

«Ксантопротеиновая реакция»

Порядок выполнения.

2. В пробирку прилейте 1 мл уксусной кислоты.

3. Содержимое пробирки нагрейте.

4. Охладите смесь и добавьте аммиак до щелочной среды.

5. Отметьте изменения.

« Биуретовая реакция »

Порядок выполнения.

1. В пробирку налейте 2-3 мл раствора белка.

2. Добавьте 2-3 мл раствора гидроксида натрия и 1-2 мл раствора медного купороса..

3. Отметьте изменения.

Качественные (цветные)

реакции на белки. Опыты №2 и №3

Ксантопротеиновая реакция

Белок + HNO3конц > ярко?желтое окрашивание

(обнаружение бензольных ядер)

Биуретовая реакция

Белок + NaOH+CuSO4 > красно-

фиолетовое окрашивание

(обнаружение пептидных связей)

«Доказательство наличие белка только в живых организмах»

Порядок выполнения.

1. В пробирках находятся свежевыжатый сок картофеля, кусочки сырого картофеля,

вареный картофель.

2. Добавьте в каждую пробирку 2-3 мл перекиси водорода.

3. Отметьте изменения. (каталаза - ферментный белок выделяется только в

присутствии молекулярной воды, растворенные в воде альбумины сворачиваются)

Опыт

Что делали

Что наблюдали

Объяснение и выводы

1. Качественные реакции на белки.

а) Биуретовая реакция.

К 2 мл раствора белка добавить раствор сульфата меди (II) и щелочи.

Красно-фиолетовое окрашивание.

При взаимодействии растворов образуется комплексное соединение между ионами Си2+ и полипептидами.

б) Ксантопротеиновая реакция.

К 2 мл раствора белка добавить по каплям концентрирующуюся азотную кислоту.

Желтое окрашивание.

Реакция доказывает, что в состав белков входят остатки ароматических аминокислот.

2. Денатурация белка.

Пробирку № 3 с раствором белка нагреть.

Во всех трех случаях наблюдается необратимое свертывание белка — денатурация.

При нагревании, действии неразбавленного спирта, солей тяжелых металлов происходит разрушение вторичной и третичной структуры, с сохранением первичной.

«Жизнь есть способ существования белковых тел…» Ф.Энгельс

Опорный конспект Приложение № 2

- АМФОТЕРНОСТЬ

Кислая среда = по типу щелочи

[белок]+ + ОН- = по типу кислоты

- ГИДРОЛИЗ ……разрушение первичной структуры белка до α-аминлкислот

Качественные реакции

- БИУРЕТОВАЯ РЕАКЦИЯ (распознавание в молекуле белка пептидных связей).

Б. + CuSO4 + NaOH → фиолетовое окрашивание

………………………………

- КСАНТОПРОТЕИНОВАЯ РЕАКЦИЯ (обнаружение бензольных ядер).

Б. + HNO3 → желтое окрашивание

- ГОРЕНИЕ БЕЛКА ………………………..

N2, CO2, H2O - запах жженых перьев

- ДЕНАТУРАЦИЯ - ………………………..

высокая t разрушение

радиоактивное облучение 2-3 структуры

соли тяжелых Ме

Протеины Протеиды

БЕЛКИ - важнейшая составная часть живых организмов, входят в состав кожи, роговых покровов, мышечной и нервной ткани

(простые) (сложные)

1 вариант

2 вариант

1. В состав аминокислот входят:

а) только аминогруппы

б) только карбоксильные группы

в) аминогруппы и карбоксильные группы

г) аминогруппы и карбонильные группы

1. Аминокислотой является вещество, формула которого:

а) СН3СН2 СОNН2

б) NН2СООН

в) NН2СН2СН2СООН

г) NН2СН2СОН

2. Аминокислоты, которые не могут синтезироваться в организме человека, а поступают только с пищей, называются

а) a -аминокислотами

б) пищевыми

в) -аминокислотами

г) незаменимыми

2. Аминокислоты - это

а) бесцветные легкокипящие жидкости

б) газы тяжелее воздуха

в) кристаллические вещества розового цвета

г) бесцветные кристаллические вещества

3. При взаимодействии аминокислот со щелочами и кислотами образуются:

б) сложные эфиры

в) дипептиды

г) полипептиды

3. Образование полипептидов происходит по типу реакции:

а) полимеризации

б) поликонденсации

в) присоединения

г) замещения

4. Формула 3-аминопропановой кислоты:

а) NН2СН2СООН

б) NН2СН2СН2СООН

в) NН2СН2СН2 NН2

г) NН2СН СН2СООН
СН3

4. Самые слабые кислотные свойства проявляет кислота:

а) уксусная

б) хлоруксусная

в) аминоуксусная

г) дихлоруксусная

5. Верным является утверждение, что аминокислоты это:

а) твердые вещества молекулярного строения

б) кристаллические вещества ионного строения

в) жидкости, хорошо растворимые в воде

г) кристаллические вещества с низкими температурами плавления

5. Аминокислоты являются амфотерными соединениями,

так как они взаимодействуют:

а) с кислотами

б) с щелочами

в) со спиртами

г) с кислотами и щелочами

Ответы 1 - В, 2 - Г, 3 - А, 4 - Б, 5 - Б Ответы 1 - В, 2 - Г, 3 -Б, 4 -В, 5 - Г

1 вариант

2 вариант

1. Укажите название белка, выполняющего защитную функцию:

1. Укажите название белка, выполняющего ферментативную функцию:

а) гемоглобин, б) оксидаза, в) антитела.

2. Белки - это..:

а) полисахариды, б) полипептиды,

в) полинуклеотиды.

2. Биологические свойства белка определяет структура:

а) третичная, б) вторичная, в) первичная.

3. Первичная структура белка поддерживается за счёт связей:

3. Вторичная структура белка поддерживается за счёт связей:

а) ионных, б) пептидных, в) водородных.

4. Гидролиз белка используется для:

а) получения аминокислот,

б) качественного обнаружения белка,

в) разрушения третичной структуры

4. Белки подвергаются реакциям:

а) денатурации, б) полимеризации,

в) поликонденсации.

5. Аминокислоты, необходимые для построения белков, попадают в организм:

а) с водой, б) с пищей, в) с воздухом.

5. Какой из процессов наиболее сложен:

а) микробиологический синтез, б) органический синтез, в) переработка растительного белка.

Ответы: 1 - в, 2 - б, 3 - б, 4 - а, 5 - б. Ответ: 1 - б, 2 - в, 3 - в. 4 - а, 5 - б.

Тест «Белки»

1 . Какие химические элементы входят в состав белков?

а) углерод б) водород в) кислород г) сера д) фосфор е) азот ё) железо ж) хлор

2 . Сколько аминокислот участвуют в образовании белков?

а) 30 в) 20 б) 26 г) 10

3 . Сколько аминокислот являются незаменимыми для человека?

а) 16 б) 10 в) 20 г) 7

4 . В результате какой реакции образуется пептидная связь?

а) реакция гидролиза в) реакция поликонденсации

б) реакция гидратации г) все вышеперечисленные реакции

5 . Какая функциональная группа придает аминокислоте - кислотные, какая - щелочные свойства? (карбоксильная, аминогруппа).

6 . Какие связи образуют 1- первичную, 2- вторичную, 3- третичную структуры белка? Соотнесите:

а) ковалентные в) ионные

б) водородные г) такие связи отсутствуют

7 ) Определите структуры белковой молекулы:

1. 2.


Таблица ответов

Номер вопроса

Вариант ответа

8) Денатурация - это разрушение белка до _____________структуры под действием________________, а также под действием растворов различных химических веществ (______,________, солей) и радиации.

9) Гидролиз - это разрушение _____________структуры белка под действием________________, а так же водных растворов кислот или щелочей.

10) Качественные реакции:

а) Биуретовая.
Белок + ___________________________ = _________________________
б) Ксантопротеиновая.
Белок + ___________________________ = __________________________

11) Установите соответствие между белками и их функцией в организме. Ответ дайте в виде последовательности цифр, соответствующих буквам по алфавиту:

БЕЛКИ: ФУНКЦИЯ:

А) гемоглобин 1)сигнальная

Б) ферменты 2) транспортная

В) антитела и антитоксины 3) структурная

4) каталитическая

5) защитная

12) Заполните значение белков:

Функции

Значение

Строительная

Клеточные мембраны, покровные ткани, шерсть, перья, гора, волосы, хрящи

Транспортная

Накопление и транспорт по организму важнейших веществ

Энергетическая

Запас аминокислот для развития организма

Двигательная

Сократительные белки основа мышечных тканей

Защитная

Белки - антитела, антитоксины распознают и уничтожают бактерии и “чужеродные” вещества

Каталитическая

Белки - природные катализаторы (ферменты)

Сигнальная

Мембранные белки воспринимают внешние воздействия и передают сигнал о них внутрь клетки

Вопросы к брифингу:

Белок иначе называют…

Что является мономерами белка?

Сколько незаменимых АК известно?

Каков атомарный состав белков?

Какая связь поддерживает вторичную структуру?

Как называется связь, образующая ППЦ?

Вторичная структура белковой молекулы в пространстве напоминает…

За счет каких взаимодействий образуются третичная структура?

Почему белки относят к ВМС?

Что в переводе с греческого означает “протеин”?

Что такое “денатурация”?

Как называется процесс взаимодействия белков с Н2О?

СТАТИЧЕСКАЯ БИОХИМИЯ

Глава IV .2.

Белки

Белки – неразветвляющиеся полимеры, минимальная структурная единица которых – аминокислота (АК). Аминокислоты соединены между собой пептидной связью. В природе встречается гораздо больше АК, чем входит в состав животных и растительный белков. Так, множество «небелковых» АК содержится в пептидных антибиотиках или являются промежуточными продуктами обмена белков. В состав белков входит 20 АК в альфа-форме, расположенных в различной, но строго определенной для каждого белка последовательности.

Классификация АК

По химическому строению

1) Алифатические – глицин (Гли), аланин (Ала), валин (Вал), лейцин (Лей), изолейцин (Илей);

2) Оксикислоты – серин (Сер), треанин (Тре);

3) Дикарбоновые – аспарагин (Асп), глутамин (Глу), аспарагиновая кислота (Аск), глутаминовая кислота (Глк);

4) Двуосновные – лизин (Лиз), гистидин (Гис), аргинин (Арг);

5) Ароматические – фениналанин (Фен), тирозин (Тир), триптофан (Три);

6) Серосодержащие – цистеин (Цис), метионин (Мет).

По биохимической роли:

1) глюкогенные – через ряд химических превращений поступают на путь гликолиза (окисления глюкозы) – Гли, Ала, Тре, Вал, Аск, Глк, Арг, Гис, Мет.

2) кетогенные – участвуют в образовании кетоновых тел - Лей, Илей, Тир, Фен.

По заменимости:

1) Незаменимые – не синтезируются в организме – Гис, Иле, Лей, Лиз, Мет, Фен, Тре, Три, Вал, а у молодняка Арг, Гис.

2) Заменимые – остальные.

За счет наличияв молекуле АК одновременно аминной и карбоксильной групп этим соединениям присущи кислотно-основные свойства. В нейтральной среде АК существуют в виде биполярных ионов- цвиттер-ионов т.е.

не NH 2 – R – COOH , аNH 3 + – R - COO –

Образование пептидной связи . Если карбоксильная группа одной АК ацилирует аминогруппу другой АК, от образуется амидная связь, которую называют пептидной. Т. о. пептиды – это соединения, образованные из остатков альфа-АК, соединенных между собой пептидной связью .

Данная связь достаточно стабильна и разрыв ее происходит лишь при участии катализаторов – специфических ферментов. Посредством такой связи АК объединяются в достаточно длинные цепочки, которые носят название полипептидных. Каждая такая цепь содержит на одном конце АК со свободной аминогруппой – это N -концевой остаток, и на другом с карбоксильной группой – С-концевой остаток.

Полипептиды, способные самопроизвольно формировать и удерживать определенную пространственную структуру, которая называется конформацией, относят к белкам. Стабилизация такой структуры возможна лишь при достижении полипептидами определенной длины, поэтому белками обычно считают полипептиды молекулярной массой более 5 000 Да. (1Да равен 1/12 изотопа углерода). Только имея определенное пространственное строение, белок может функционировать.

Функции белков

1) Структурная (пластическая) – белками образованы многие клеточные компоненты, а в комплексе с липидами они входят в состав клеточных мембран.

2) Каталитическая – все биологические катализаторы – ферменты по своей химической природе являются белками.

3) Транспортная – белок гемоглобин транспортирует кислород, ряд других белков образуя комплекс с липидами транспортируют их по крови и лимфе (пример: миоглобин, сывороточный альбумин).

4) Механохимическая – мышечная работа и иные формы движения в организме осуществляются при непосредственном участии сократительных белков с использованием энергии макроэргических связей (пример: актин, миозин).

5) Регуляторная – ряд гормонов и других биологически активных веществ имеют белковую природу (пр.: инсулин, АКТГ).

6) Защитная – антитела (иммуноглобулины) являются белками, кроме тогооснову кожи составляет белок коллаген, а волос – креатин. Кожа и волосы защищают внутреннюю среду организма от внешних воздействий. В состав слизи и синовиальной жидкости входят мукопротеиды.

7) Опорная – сухожилия, поверхности суставов соединения костей образованы в значительной степени белковыми веществами (пр.: коллаген, эластин).

8) Энергетическая – аминокислоты белков могут поступать на путь гликолиза, который обеспечивает клетку энергией.

9) Рецепторная – многие белки участвуют в процессах избирательного узнавания (рецепторы).

Уровни организации белковой молекулы.

В современной литературе принято рассматривать4 уровня организации структуры молекулы белка.

Последовательность аминокислотных остатков, соединенных между собой пептидной связью называют первичным уровнем организации белковой молекулы. Она кодируется структурным геном каждого белка. Связи: пептидная и дисульфидные мостики между относительно близко расположенными остатками цистеинов. Это ковалентные взаимодействия, которые разрушаются только под действием протеолитических ферментов (пепсин, трипсин и т.д.).

Вторичной структурой называют пространственное расположение атомов главной цепи молекулы белка . Существует три типа вторичной структуры: альфа-спираль, бета-складчатость и бета-изгиб. Образуется и удерживается в пространстве за счет образования водородных связей между боковыми группировками АК основной цепи. Водородные связи образуются между электроотрицательными атомами кислорода карбонильных групп и атомами водорода двух аминокислот.

Альфа-спираль – это пептидная цепь штопорообразно закрученная вокруг воображаемого цилиндра. Диаметр такой спирали 0,5 А. В природных белках обнаружена только правая спираль. Некоторые белки (инсулин) имеют две параллельные спирали. Бета-складчатость – полипептидная цепь собрана в равнозначные складки. Бета-изгиб – образуется между тремя аминокислотами за счет водородной связи. Он необходим для изменения пространственного расположения полипептидной цепи при образовании третичной структуры белка.

Третичная структура – это свойственный данному белку способ укладки полипептидой цепи в пространстве . Это основа функциональности белка. Она обеспечивает стабильность обширных участков белка, состоящих из множества аминокислотных остатков и боковых групп. Такие упорядоченные в пространстве участки белка формируют активные центры ферментов или зоны связывания и повреждение третичной структуры приводит к утрате функциональной активности белка.

Стабильность третичной структуры зависит в основном от нековалентных взаимодействий внутри белковой глобулы – преимущественно водородных связей и ван-дер-ваальсовых сил. Но некоторые белки дополнительно стабилизируются за счет таких ковалентных взаимодействий как дисульфидные мостики межу остатками цистеина.

Большинство белковых молекул имеют участки как альфа-спирали так и бета-складчатости. Но чаще по форме третичной структуры разделяют глобулярные белки – построенные преимуществено из альфа-спиралей и имеющеие форму шара или элипса (большинство ферментов). И фибрилярные – состоящие пеимущественно из бета-складчатости и имеющие сплющенную или нитевидную формы (пепсин, белки соединительной такни и хряща).

Размещение в пространстве взаимодействующих между собой субъединиц, образованных отдельными полипептидными цепями, называется четвертичной структурой . Т.е. в формировании четвертичной структуры участвуют не пептидные цепи сами по себе, а глобулы, образованные каждой из этих цепей в отдельности. Четвертичная структура – это высший уровень организации белковой молекулы и он присущ далеко не всем белкам. Связи, формирующие эту структуру нековалентные: водородные, электростатического взаимодействия.

Фундаментальный принцип молекулярной биологии: последовательность аминокислотных остатков полипептидной цепи белка несет в себе всю информацию, которая необходима для формирования определенной пространственной структуры. Т.е. имеющаяся в данном белке аминокислотная последовательность предопределяет образование альфа- или бета-конформации вторичной структуры за счет образования между этими АК водородных или дисульфидных связей и в дальнейшем формирование глобулярной или фибрилярной структуры также за счет нековалентных взаиомдействий между боковыми учатками определенных аминокислот.

Физико-химические свойства

Растворы белка относятся к растворам ВМС и обладают рядом свойств гидрофильных коллоидов: медленной диффузией, высокой вязкостью, опаслеценцией, дают конус Тиндаля.

1) Амфотерность связана с наличием в молекуле белка катионообразующих групп – аминогрупп и анионообразующих – карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преоблазают карбоксильные группы то заряд молекулы отрицательный (проявляются свойства слабой кислоты), если аминогруппы – то положительный (основные свойства).

Заряд белка также зависит от рН среды. В кислой среде молекула приобретаетположительный заряд, в щелочной – отрицательный.

[ NH 3 + - R – COO - ] 0

pH > 7 [ OH - ]7 >pH [ H + ]

[ NH 2 - R – COO - ] - [ NH 3 + - R – COOH] +

Значение рН при котором число разноименных зарядов в белковой молекуле одинаково, т. е. суммарный заряд равен нулю называется изоэлектрической точкой данного белка. Устойчивость белковой молекулы к воздействию физических и химических факторов в изоэлектрической точке наименьшая.

Большинство природных белков содержат значительное количество дикарбоновых аминокислот и поэтому относятся к кислым белкам. Их изоэлектрическая точка лежит в слабокислой среде.

2) Растворы белков обладают буферными свойствами за счет их амфотерности.

3) Растворимость . Поскольку молекула белка содержит полярные амино – и карбоксильные группы, то в растворе поверхностные остатки АК гидратируются – происходит образование коацервата .

4) Коацервация - слияние водных оболочек нескольких частиц, без объединения самих частиц.

5) Коагуляция – склеивание белковых частиц и выпадение их в осадок. Это происходит при удаленииих гидратной оболочки. Для этого достаточно изменить структуручастицы белка, так, чтобы ее гидрофильные группы, которые связывают воду растворителя, оказались внутри частицы. Реакции осаждения балка в растворе делятся на две группы: обратимые (высаливание) и необратимые (денатурация).

6) Денатурацией называется существенное изменение вторичной и третичной структуры белка, т. е. Нарушение системы нековалентных взаимодействий, не затрагивающее его ковалентной (первичной) структуры. Денатурированный белок лишен всякой биологической активности в клетке и в основном используется как источник аминокислот. Денатурирующими агентами могут быть химические факторы: кислоты, щелочи, легко гидратирующие соли, органические растворители, различные окислители. К физическим факторам могут быть отнесены: действие высокого давления, многократное замораживание и оттаивание, ультразвуковые волны, УФ-лучи, ионизирующая радиация. Но наиболее распространенным физическим фактором денатурации белка является повышение температуры.

В ряде случаев денатурированный белок в клетке может быть подвергнут ренатурации, т. е. свернут обратно в первоначальную пространственную структуру. Этот процесс происходит при участии специфических белков, так называемых белков теплового шока (heat shock proteins или hsp ) молекулярной массой 70 кДа. Данные белки синтезируются в клетках в большом количествепри воздействии на нее (или весь организм) неблагоприятных факторов, в частности повышенной температуры. Присоединяясь к развернутой полипептидной цепи hsp 70 быстро сворачивают ее в правильную первоначальную структуру.

Классификация белков

По растворимости: водорастворимые, солерстворимые, спирторастворимые, нерастворимые и пр.

По конформационной структуре : фибриллярные, глобулярные.

По химическому строению: протеины – состоят только из аминокислот, протеиды – помимо АК имеют в составе небелковую часть (углеводы, липиды, металлы, нуклеиновые кислоты)

Протеины :

1) Альбумины – растворимы в воде, не растворимы в конц. растворах солей. р I = 4.6-4.7. Существуют альбумины молока, яиц, сыворотки крови.

2) Глобулины – не растворимы в воде, растворимы в солевых растворах. Имунноглобулины .

3) Гистоны – растворимы в воде, в слабоконцентрированных кислотах. Обладают выраженными основными свойствами. Это ядерные белки, они связаны с ДНК и РНК.

4) Склеропротеины – белки опорных тканей (хрящей, костей), шерсти, волос. Не растворимы в воде, слабых кислотах и щелочах.

а) коллагены – фибрилярные белки соединительной ткани. При длительном кипячении они растворяются в воде и при застудневании образуется желатин.

б) эластины– белки связок и сухожилий. По свойствам похожи на коллагены, но подвергаются гидролизу под действием ферментов пищеварительного сока;

в) кератин – входит в состав волос, перьев, копыт;

г) фиброин – белок шелка, в совем составе содержит много серина;

д) проламины и глютенины – белки растительного происхождения.

Протеиды

Помимо АК содержат простетическую группу и в зависимости от ее химической природы они классифицируются на:

1) Нуклеопротеиды – простетическая група – нуклеиновые кислоты. Среди многочисленных классов нуклеопротеидов наиболее изученными являются рибосомы, состоящие из нескольких молекул РНК и рибосомных белков, и хроматин – основной нуклеопротеид эукариотических клеток, состоящий из ДНК и структурообразующих белков – гистонов (содержатся в клеточном ядре и митохондриях) (подробнее см. главы "Нуклеиновые кислоты" и "Матричный биосинтез").

2) Гемопротеиды - небелковый компонент этих протеидов – гем, построен из четырех пиррольных колец, с ними связан ион двухвалентного железа (через атомы азота). К таким белка относятся: гемоглобин, миоглобин, цитохромы. Этот класс белков еще называют хромопротеиды, поскольку гем является окрашенным соединением. Гемоглобин – транспорт кислорода. Миоглобин – запасание кислорода в мышцах. Цитохромы (ферменты) – катализ окислительно-восстановаительных реакций и электронный транспорт в дыхательной цепи.

(Подробнее см. приложение 1).

3) Металлопротеиды – в состав простетической группы входят металлы. Хлорофилл – содержит гем, но вместо железа – магний. Цитохром а – содержит медь, сукцинатдегидрогеназа и др. ферменты содержат негеминовое железо (ферродоксин ).

4) Липопротеиды – содержат липиды, входят в состав клеточных мембран

5) Фосфопротеиды – содержат остаток фосфорной кислоты

6) Глюкопротеиды – содержат сахара

ЛИТЕРАТУРА К ГЛАВЕ IV .2.

1. Балезин С. А. Практикум по физической и коллоидной химии // М:. Просвещение, 1972, 278 с.;

2. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

3. Кнорре Д. Г., Мызина С. Д. Биологическая химия. – М.: Высш. шк. 1998, 479 с.;

4. Молекулярная биология. Структура и функции белков /Под ред. А. С. Спирина // М.: Высш. шк., 1996, 335 с.;

6. Равич – Щербо М. И., Новиков В. В. Физическая и коллоидная химия // М:. Высш. шк., 1975,255 с.;

7. Филиппович Ю. Б., Егорова Т. А., Севастьянова Г. А. Практикум по общей биохимии // М.: Просвящение, 1982, 311с.;

    Классификация белков.

    Состав и строение

    пептидная связь

    элементарный состав

    молекулярная масса

    аминокислоты

    Химические и физические свойства.

    Значение белков.

Список использованной литературы.

Введение

Белк и - высокомолекулярные азотистые органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Белки – основная и необходимая составная часть всех организмов. Именно Белки осуществляют обмен веществ и энергетические превращения, неразрывно связанные с активными биологическими функциями. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному – повышения. Микроорганизмы обычно богаче белком (некоторые же вирусы являются почти чистыми белками). Таким образом, в среднем можно принять, что 10% биомассы на Земле представлено белком, то есть его количество измеряется величиной порядка 10 12 - 10 13 тонн. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов, являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий) , покровы организма (кожа, волосы, ногти и т.п.) , состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества. Роль белков в живом организме подчеркивается уже самим их названием «протеины» (в переводе с греческого protos – первый, первичный) , предложенным в 1840 голландским химиком Г. Мульдером, который обнаружил, что в тканях животных и растений содержатся вещества, напоминающие по своим свойствам яичный белок. Постепенно было установлено, что белки представляют собой обширный класс разнообразных веществ, построенных по одинаковому плану. Отмечая первостепенное значение белков для процессов жизнедеятельности, Энгельс определил, что жизнь есть способ существования белковых тел, заключающийся в постоянном самообновлении химических составных частей этих тел.

Классификация белков.

Из-за относительно больших размеров белковых молекул, сложности их строения и отсутствия достаточно точных данных о структуре большинства белков еще нет рациональной химической классификации белков. Существующая классификация в значительной мере условна и построена главным образом на основании физико-химических свойств белков, источников их получения, биологической активности и других, нередко случайных, признаков. Так, по физико-химическим свойствам белки делят на фибриллярные и глобулярные, на гидрофильные(растворимые) и гидрофобные (нерастворимые) и т.п. По источнику получения белки подразделяют на животные, растительные и бактериальные; на белки мышечные, нервной ткани, кровяной сыворотки и т.п.; по биологической активности – на белки-ферменты, белки-гормоны, структурные белки, сократительные белки, антитела и т.д. Следует, однако, иметь в виду, что из-за несовершенства самой классификации, а также вследствие исключительного многообразия белков многие из отдельных белков не могут быть отнесены ни к одной из описываемых здесь групп.

Все белки принято делить на простые белки,или протеины, и сложные белки, или протеиды (комплексы белков с небелковыми соединениями).Простые белки являются полимерами только аминокислот; сложные, помимо остатков аминокислот, содержат также небелковые, так называемые простетические группы.

Гистоны

Имеют сравнительно низкую молекулярную массу (12-13 тыс.), с преобладанием щелочных свойств. Локализованы в основном в ядрах клеток. Растворимы в слабых кислотах, осаждаются аммиаком и спиртом. Имеют только третичную структуру. В естественных условиях прочно связаны с ДНК и входят в состав нуклеопротеидов. Основная функция - регуляция передачи генетической информации с ДНК и РНК (возможна блокировка передачи).

Протамины

Самая низкая молекулярная масса (до 12 тыс.). Проявляет выраженные основные свойства. Хорошо растворимы в воде и слабых кислотах. Содержатся в половых клетках и составляют основную массу белка хроматина. Как и гистоны образуют комплекс с ДНК, функция - придают ДНК химическую устойчивость.

Глютелины

Растительные белки, содержащиеся в клейковине семян злаковых и некоторых других, в зеленых частях растений. Нерастворимые в воде, растворах солей и этанола, но хорошо растворимы в слабых растворах щелочей. Содержат все незаменимые аминокислоты, являются полноценными продуктами питания.

Проламины

Растительные белки. Содержатся в клейковине злаковых растений. Растворимы только в 70%-м спирте (это объясняется высоким содержанием пролина и неполярных аминокислот).

Протеиноиды

Белки опорных тканей (кость, хрящ, связки, сухожилия, ногти, волосы). Нерастворимые или трудно растворимые в воде, солевых и водно-спиртовых смесях белки с высоким содержанием серы. К протеиноидам относятся кератин, коллаген, фиброин.

Альбумины

Невысокой молекулярной массой (15-17 тыс.). Характерны кислые свойства. Растворимы в воде, и слабых солевых растворах. Осаждаются нейтральными солями при 100%-м насыщении. Участвуют в поддержании осмотического давления крови, транспортируют с кровью различные вещества. Содержатся в сыворотке крови, молоке, яичном белке.

Глобулины

Молекулярная масса до 100 тыс.. В воде нерастворимы, но растворимы в слабых солевых растворах и осаждаются в менее концентрированных растворах (уже при 50%-м насыщении). Содержатся в семенах растений, особенно в бобовых и масленичных; в плазме крови и в некоторых других биологических жидкостях. Выполняющие функцию иммунной защиты, обеспечивают устойчивость организма к вирусным инфекционным заболеваниям.

Сложные белки делят на ряд классов в зависимости от характера простетической группы.

Фосфопротеины

Имеют в качестве небелкового компонента фосфорную кислоту. Представителями данных белков являются казеиноген молока, вителлин (белок желтков яиц). Такая локализация фосфопротеидов свидетельствует о важном их значении для развивающегося организма. У взрослых форм эти белки присутствуют в костной и нервной тканях.

Липопротеины

Сложные белки, простетическая группа которых образована липидами. По строению это небольшого размера (150-200 нм) сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть - липидами и их производными. Основная функция липопротеинов - транспорт по крови липидов. В зависимости от количества белка и липидов, липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и высокой плотности (ЛПВП), которые иногда обозначаются как - и -липопротеиды.

Металлопротеины

Гликопротеины

Простетическая группа представлена углеводами и их производными. Исходя из химического строения углеводного компонента, выделяют 2 группы:

Истинные - в качестве углеводного компонента наиболее часто встречаются моносахариды. Протеогликаны - построены из очень большого числа повторяющихся единиц, имеющих дисахаридный характер (гиалуроновая кислота, гипарин, хондроитин, каротинсульфаты).

Функции: структурно-механическую (имеются в коже, хряще, сухожилиях); каталитическую (ферменты); защитную; участие в регуляции клеточного деления.

Хромопротеины

Выполняют ряд функций: участие в процессе фотосинтеза и окислительно-восстановительных реакциях, транспорт С и СО 2 . Являются сложными белками, простетическая группа которых представлена окрашенными соединениями.

Нуклеопротеины

Роль протеистической группы выполняет ДНК или РНК. Белковая часть представлена в основном гистонами и протаминами. Такие комплексы ДНК с протаминами обнаружены в сперматозоидах, а с гистонами - в соматических клетках, где молекула ДНК “намотана” вокруг молекул белка-гистона. Нуклепротеинами по своей природе являются вне клетки вирусы - это комплексы вирусной нуклеиновой кислоты и белковой оболочки - капсида.