Молекулярная структура днк. Днк и гены. Строение и функции РНК

Молекулярная генетика раздел генетики, который занимается изучением наследственности на молекулярном уровне.

Нуклеиновые кислоты. Репликация ДНК. Реакции матричного синтеза

Нуклеиновые кислоты (ДНК, РНК) были открыты в 1868 году швейцарским биохимиком И.Ф. Мишером. Нуклеиновые кислоты – линейные биополимеры, состоящие из мономеров – нуклеотидов.

ДНК – структура и функции

Химическую структуру ДНК расшифровали в 1953 г. американский биохимик Дж. Уотсон и английский физик Ф. Крик.

Общая структура ДНК. Молекула ДНК состоит из 2 цепей, которые закручены в спираль (рис. 11) одна вокруг другой и вокруг общей оси. Молекулы ДНК могут содержать от 200 до 2х10 8 пар нуклеотидов. Вдоль спирали молекулы ДНК соседние нуклеотиды располагаются на расстоянии 0,34 нм друг от друга. Полный оборот спирали включает 10 пар нуклеотидов. Его длина составляет 3,4 нм.

Рис . 11 . Схема строения ДНК (двойная спираль)

Полимерность молекулы ДНК. Молекула ДНК – биоплоимер состоит из сложных соединений – нуклеотидов.

Строение нуклеотида ДНК. Нуклеотид ДНК состоит из 3 звеньев: одно из азотистых оснований (аденин, гуанин, цитозин, тимин); дезокисирибоза (моносахарид); остаток фосфорной кислоты (рис. 12).

Различают 2 группы азотистых оснований:

    пуриновые – аденин (А), гуанин (Г), содержащие два бензольных кольца;

    пиримидиновые – тимин (Т), цитозин (Ц), содержащие одно бензольное кольцо.

В состав ДНК входят следующие виды нуклеотидов: адениновый (А); гуаниновый (Г); цитозиновый (Ц); тиминовый (Т). Названия нуклеотидов соответствуют названиям азотистых оснований, входящих в их состав: адениновый нуклеотид азотистое основание аденин; гуаниновый нуклеотид азотистое основание гуанин; цитозиновый нуклеотид азотистое основание цитозин; тиминовый нуклеотид азотистое основание тимин.

Соединение двух цепей ДНК в одну молекулу

Нуклеотиды А, Г, Ц и Т одной цепи соединены соответственно с нуклеотидами Т, Ц, Г и А другой цепи водородными связями . Между А и Т формируется две водородные связи, а между Г и Ц – три водородные связи (А=Т, Г≡Ц).

Пары оснований (нуклеотидов) А – Т и Г – Ц называют комплементарными, т. е. взаимно соответствующими. Комплементарность – это химическое и морфологическое соответствие нуклеотидов друг другу в парных цепочках ДНК.

5 3

1 2 3

3’ 5’

Рис. 12 Участок двойной спирали ДНК. Строение нуклеотида (1– остаток фосфорной кислоты; 2– дезоксирибоза; 3– азотистое основание). Соединение нуклеотидов с помощью водородных связей.

Цепи в молекуле ДНК антипараллельны, т. е. направлены в противоположные стороны, так что 3’- конец одной цепи располагается напротив 5’- конца другой цепи. Генетическая информация в ДНК записана в направлении от 5’ конца к 3’ концу. Эта нить называется смысловой ДНК,

поскольку здесь расположены гены. Вторая нить – 3’–5’ служит эталоном хранения генетической информации.

Cоотношение между числом разных оснований в ДНК установлено Э. Чаргаффом в 1949 г. Чаргафф выявил, что у ДНК различных видов количество аденина равно количеству тимина, а количество гуанина – количеству цитозина.

Правило Э. Чаргаффа :

    в молекуле ДНК количество A (адениновых) нуклеотидов всегда равно количеству Т (тиминовых) нуклеотидов или отношение ∑ А к ∑ Т=1. Сумма Г (гуаниновых) нуклеотидов равна сумме Ц (цитозиновых) нуклеотидов или отношение ∑ Г к ∑ Ц=1;

    сумма пуриновых оснований (А+Г) равна сумме пиримидиновых оснований (Т+Ц) или отношение ∑ (А+Г) к ∑ (Т+Ц)=1;

Способ синтеза ДНК – репликация . Репликация – это процесс самоудвоения молекулы ДНК, осуществляемый в ядре под контролем ферментов. Самоудовоение молекулы ДНК происходит на основе комплементарности – строгого соответствия нуклеотидов друг другу в парных цепочках ДНК. В начале процесса репликации молекула ДНК раскручивается (деспирализуется) на определенном участке (рис. 13), при этом освобождаются водородные связи. На каждой из цепей, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимиразы, синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, содержащиеся в цитоплазме клеток. Эти нуклеотиды выстраиваются комплементарно нуклеотидам двух материнских цепей ДНК. Фермент ДНК-полимераза присоединяет комплементарные нуклеотиды к матричной цепи ДНК. Например, к нуклеотиду А матричной цепи полимераза присоединяет нуклеотид Т и, соответственно, к нуклеотиду Г – нуклеотид Ц (рис. 14). Сшивание комплементарных нуклеотидов происходит с помощью фермента ДНК-лигазы . Так путем самоудвоения синтезируются две дочерние цепи ДНК.

Образовавшиеся две молекулы ДНК из одной молекулы ДНК представляют собой полуконсервативную модель , поскольку состоят из старой материнской и новой дочерней цепей и являются точной копией материнской молекулы (рис. 14). Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерней.

Рис . 13 . Деспирализация молекулы ДНК с помощью фермента

1

Рис . 14 . Репликация – образование двух молекул ДНК из одной молекулы ДНК: 1 – дочерняя молекула ДНК; 2 – материнская (родительская) молекула ДНК.

Фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’ –> 5’. Поскольку комплементарные цепи в молекуле ДНК направлены в противоположные стороны, и фермент ДНК-полимераза может двигаться вдоль цепи ДНК только в направлении 3’–>5’, то и синтез новых цепей идет антипараллельно (по принципу антипараллельности ).

Место локализации ДНК . ДНК содержится в ядре клетки, в матриксе митохондрий и хлоропластов.

Количество ДНК в клетке постоянно и составляет 6,6х10 -12 г.

Функции ДНК:

    Хранение и передача в ряду поколений генетической информации молекулам и - РНК;

    Структурная. ДНК является структурной основой хромосом (хромосома на 40% состоит из ДНК).

Видоспецифичность ДНК . Нуклеотидный состав ДНК служит критерием вида.

РНК, строение и функции.

Общая структура .

РНК – линейный биополимер, состоящий из одной полинуклеотидной цепи. Различают первичную и вторичную структуры РНК. Первичная структура РНК представляет собой одноцепочечную молекулу, а вторичная структура имеет форму креста и характерна для т- РНК.

Полимерность молекулы РНК . Молекула РНК может включать от 70 нуклеотидов до 30 000 нуклеотидов. Нуклеотиды, входящие в состав РНК, следующие: адениловый (А), гуаниловый (Г), цитидиловый (Ц), урациловый (У). В составе РНК тиминовый нуклеотид замещен на урациловый (У).

Строение нуклеотида РНК.

Нуклеотид РНК включает 3 звена:

    азотистое основание (аденин, гуанин, цитозин, урацил);

    моносахарид – рибоза (в рибозе присутствует кислород при каждом атоме углерода);

    остаток фосфорной кислоты.

Способ синтеза РНК – транскрипция . Транскрипция, как и репликация, – реакция матричного синтеза. Матрицей является молекула ДНК. Реакция протекает по принципу комплементарности на одной из цепей ДНК (рис. 15). Процесс транскрипции начинается с деспирализации молекулы ДНК на определенном участке. На транскрибируемой цепи ДНК имеется промотор – группа нуклеотидов ДНК, с которой начинается синтез молекулы РНК. К промотору присоединяется фермент РНК-полимераза . Фермент активизирует процесс транскрипции. По принципу комплементарности достраиваются нуклеотиды, поступающие из цитоплазмы клетки к транскрибируемой цепи ДНК. РНК-полимераза активизирует выстраивание нуклеотидов в одну цепь и формирование молекулы РНК.

В процессе транскрипции выделяют четыре стадии: 1) связывание РНК-полимеразы с промотором; 2) начало синтеза (инициация); 3) элонгация – рост цепи РНК, т. е. происходит последовательное присоединение нуклеотидов друг к другу; 4) терминация – завершение синтеза и-РНК.

Рис . 15 . Схема транскрипции

1 – молекула ДНК (двойная цепочка); 2 – молекула РНК; 3–кодоны; 4– промотор.

В 1972 г. американские ученые – вирусолог Х.М. Темин и молекулярный биолог Д. Балтимор на вирусах в опухолевых клетках открыли обратную транскрипцию. Обратная транскрипция – переписывание генетической информации с РНК на ДНК. Процесс протекает с помощью фермента обратной транскриптазы .

Виды РНК по функции

    Информационная, или матричная РНК (и-РНК, или м-РНК) переносит генетическую информацию с молекулы ДНК к месту синтеза белка – в рибосому. Синтезируется в ядре при участии фермента РНК-полимеразы. Она составляет 5% от всех видов РНК клетки. и- РНК включает от 300 нуклеотидов до 30 000 нуклеотидов (самая длинная цепь среди РНК).

    Транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка,– в рибосому. Имеет форму креста (рис. 16) и состоит из 70 – 85 нуклеотидов. Ее количество в клетке составляет 10-15 % РНК клетки.

Рис. 16. Схема строения т-РНК: А–Г – пары нуклеотидов, соединенные с помощью водородных связей; Д – место прикрепления аминокислоты (акцепторный участок); Е – антикодон.

3. Рибосомная РНК (р-РНК) синтезируется в ядрышке и входит в состав рибосом. Включает примерно 3000 нуклеотидов. Составляет 85% РНК клетки. Этот вид РНК содержатся в ядре, в рибосомах, на эндоплазматической сети, в хромосомах, в матриксе митохондрий, а также в пластидах.

Основы цитологии. Решение типовых задач

Задача 1

Сколько тиминовых и адениновых нуклеотидов содержится в ДНК, если в ней обнаружено 50 цитозиновых нуклеотидов, что составляет 10% от всех нуклеотидов.

Решение. По правилу комплементарности в двойной цепи ДНК цитозин всегда комплемпентарен гуанину. 50 цитозиновых нуклеотидов составляют 10%, следовательно, согласно правилу Чаргаффа, 50 гуаниновых нуклеотидов также составляют 10%, или (если ∑Ц =10%, то и ∑Г =10%).

Сумма пары нуклеотидов Ц + Г равна 20%

Сумма пары нуклеотидов Т + А = 100% – 20 % (Ц + Г) = 80 %

Для того, чтобы узнать, сколько тиминовых и адениновых нуклеотидов содержится в ДНК, нужно составить следующую пропорцию:

50 цитозиновых нуклеотидов → 10 %

Х (Т + А) →80 %

Х = 50х80:10=400 штук

Согласно правилу Чаргаффа ∑А= ∑Т, следовательно ∑А=200 и ∑Т=200.

Ответ: количество тиминовых, как и адениновых нуклеотидов в ДНК, равно 200.

Задача 2

Тиминовые нуклеотиды в ДНК составляют 18% от общего количества нуклеотидов. Определите процент остальных видов нуклеотидов, содержащихся в ДНК.

Решение. ∑Т=18%. Согласно правилу Чаргаффа ∑Т=∑А, следовательно на долю адениновых нуклеотидов также приходится 18 % (∑А=18%).

Сумма пары нуклеотидов Т+А равна 36 % (18 % + 18 % = 36 %). На пару нуклеотидов Ги Ц приходится: Г+Ц=100 % –36 %=64 %. Поскольку гуанин всегда комплементарен цитозину, то их содержание в ДНК будет равным,

т. е. ∑ Г= ∑Ц=32%.

Ответ : содержание гуанина, как и цитозина, составляет 32 %.

Задача 3

20 цитозиновых нуклеотидов ДНК составляют 10% от общего количества нуклеотидов. Сколько адениновых нуклеотидов содержится в молекуле ДНК?

Решение. В двойной цепочке ДНК количество цитозина равно количеству гуанина, следовательно, их сумма составляет: Ц+Г=40 нуклеотидов. Находим общее количество нуклеотидов:

20 цитозиновых нуклеотидов → 10 %

Х (общее количество нуклеотидов) →100 %

Х=20х100:10=200 штук

А+Т=200 – 40=160 штук

Так как аденин комплементарен тимину, то их содержание будет равным,

т. е. 160 штук: 2=80 штук, или ∑А=∑Т=80.

Ответ : в молекуле ДНК содержится 80 адениновых нуклеотидов.

Задача 4

Допишите нуклеотиды правой цепи ДНК, если известны нуклеотиды ее левой цепи: АГА – ТАТ – ГТГ – ТЦТ

Решение. Построение правой цепи ДНК по заданной левой цепи производится по принципу комплементарности – строгого соответствия нуклеотидов друг другу: аденонивый – тиминовый (А–Т), гуаниновый – цитозиновый (Г–Ц). Поэтому нуклеотиды правой цепи ДНК должны быть следующие: ТЦТ – АТА – ЦАЦ – АГА.

Ответ : нуклеотиды правой цепи ДНК: ТЦТ – АТА – ЦАЦ – АГА.

Задача 5

Запишите транскрипцию, если транскрибируемая цепочка ДНК имеет следующий порядок нуклеотидов: АГА – ТАТ – ТГТ – ТЦТ.

Решение . Молекула и-РНК синтезируется по принципу комплеиентарности на одной из цепей молекулы ДНК. Нам известен порядок нуклеотидов в транскрибируемой цепи ДНК. Следовательно, надо построить комплементарную цепь и-РНК. Следует помнить, что вместо тимина в молекулу РНК входит урацил. Следовательно:

Цепь ДНК: АГА – ТАТ – ТГТ – ТЦТ

Цепь и-РНК: УЦУ – АУА –АЦА –АГА.

Ответ : последовательность нуклеотидов и-РНК следующая: УЦУ – АУА – АЦА –АГА.

Задача 6

Запишите обратную транскрипцию, т. е. постройте фрагмент двухцепочечной молекулы ДНК по предложенному фрагменту и-РНК, если цепочка и- РНК имеет следующую последовательность нуклеотидов:

ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА

Решение. Обратная транскрипция – это синтез молекулы ДНК на основе генетического кода и-РНК. Кодирующая молекулу ДНК и-РНК имеет следующий порядок нуклеотидов: ГЦГ – АЦА – УУУ – УЦГ – ЦГУ – АГУ – АГА. Комплементарная ей цепочка ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА – ТЦТ. Вторая цепочка ДНК: ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Ответ : в результате обратной транскрипции синтезированы две цепочки молекулы ДНК: ЦГЦ – ТГТ – ААА – АГЦ – ГЦА – ТЦА и ГЦГ–АЦА–ТТТ–ТЦГ–ЦГТ–АГТ–АГА.

Генетический код. Биосинтез белка.

Ген – участок молекулы ДНК, содержащий генетическую информацию о первичной структуре одного определенного белка.

Экзон-интронная структура гена эукариот

    промотор – участок ДНК (длиной до 100 нуклеотидов), к которому присоединяется фермент РНК-полимераза , необходимый для осуществления транскрипции;

2) регуляторная зона – зона, влияющая на активность гена;

3) структурная часть гена – генетическая информация о первичной структуре белка.

Последовательность нуклеотидов ДНК, несущая генетическую информацию о первичной структуре белка – экзон . Они также входят в состав и-РНК. Последовательность нуклеотидов ДНК, не несущая генетическую информацию о первичной структуре белка – интрон . Они не входят в состав и-РНК. В ходе транскрипции с помощью специальных ферментов происходит вырезание копий интронов из и-РНК и сшивание копий экзонов при образовании молекулы и-РНК (рис. 20). Этот процесс называется сплайсинг .

Рис . 20 . Схема сплайсинга (формирование зрелой и-РНК у эукариот)

Генетический код – система последовательности нуклеотидов в молекуле ДНК, или и-РНК, которая соответствует последовательности аминокислот в полипептидной цепи.

Свойства генетического кода:

    Триплетность (АЦА – ГТГ – ГЦГ…)

Генетический код является триплетным, так как каждая из 20 аминокислот кодируется последовательностью трех нуклеотидов (триплетом , кодоном) .

Существует 64 вида триплетов нуклеотидов (4 3 =64).

    Однозначность (специфичность)

Генетический код является однозначным, так как каждый отдельный триплет нуклеотидов (кодон) кодирует только одну аминокислоту, или один кодон всегда соответствует одной аминокислоте (таблица 3).

    Множественность (избыточность, или вырожденность)

Одна и та же аминокислота может кодироваться несколькими триплетами (от 2 до 6), т. к. белокобразующих аминокислот –20, а триплетов – 64.

    Непрерывность

Считывание генетической информации происходит в одном направлении, слева направо. Если произойдет выпадение одного нуклеотида, то при считывании его место займет ближайший нуклеотид из соседнего триплета, что приведет к изменению генетической информации.

    Универсальность

Генетический код характерен для всех живых организмов, и одинаковые триплеты кодируют одну и ту же аминокислоту у всех живых организмов.

    Имеет стартовые и терминальные триплеты (стартовый триплет – АУГ, терминальные триплеты УАА, УГА, УАГ). Эти виды триплетов не кодируют аминокислоты.

    Неперекрываемость (дискретность)

Генетический код является неперекрывающимся, так как один и тот же нуклеотид не может входить одновременно в состав двух соседних триплетов. Нуклеотиды могут принадлежать только одному триплету, а если переставить их в другой триплет, то произойдет изменение генетической информации.

Таблица 3 – Таблица генетического кода

Основания кодонов

Примечание: сокращенные названия аминокислот даны в соответствии с международной терминологией.

Биосинтез белка

Биосинтез белка – вид пластического обмена веществ в клетке, происходящий в живых организмах под действием ферментов. Биосинтезу белка предшествуют реакции матричного синтеза (репликация – синтез ДНК; транскрипция – синтез РНК; трансляция – сборка молекул белка на рибосомах). В процессе биосинтеза белка выделяют 2 этапа:

    транскрипция

    трансляция

В ходе транскрипции генетическая информация, заключенная в ДНК, находящейся в хромосомах ядра, передается молекуле РНК. По завершении процесса транскрипции и-РНК выходит в цитоплазму клетки через поры в мембране ядра, располагается между 2 субъединицами рибосомы и участвует в биосинтезе белка.

Трансляция – процесс перевода генетического кода в последовательность аминокислот. Трансляция осуществляется в цитоплазме клетки на рибосомах, которые располагаются на поверхности ЭПС (эндоплазматической сети). Рибосомы – сферические гранулы, диаметром, в среднем, 20 нм, состоящие из большой и малой субъединиц. Молекула и-РНК располагается между двумя субъединицами рибосомы. В процессе трансляции участвуют аминокислоты, АТФ, и-РНК, т-РНК, фермент амино-ацил т-РНК-синтетаза.

Кодон – участок молекулы ДНК, или и-РНК, состоящий из трех последовательно расположенных нуклеотидов, кодирующий одну аминокислоту.

Антикодон – участок молекулы т-РНК, состоящий из трех последовательно расположенных нуклеотидов и комплементарный кодону молекулы и-РНК. Кодоны комплементарны соответствующим антикодонам и соединяются с ними с помощью водородных связей (рис. 21).

Синтез белка начинается со стартового кодона АУГ . От него рибосома

перемещается по молекуле и-РНК, триплет за триплетом. Аминокислоты поступают по генетическому коду. Встраивание их в полипептидную цепь на рибосоме происходит с помощью т-РНК. Первичная структура т-РНК (цепочка) переходит во вторичную структуру, напоминающую по форме крест, и при этом в ней сохраняется комплементарность нуклеотидов. В нижней части т-РНК имеется акцепторный участок, к которому присоединяется аминокислота (рис.16). Активизация аминокислоты осуществляется при помощи фермента аминоацил т-РНК-синтетазы . Суть этого процесса состоит в том, что данный фермент взаимодействует с аминокислотой и с АТФ. При этом формируется тройной комплекс, представленный данным ферментом, аминокислотой и АТФ. Аминокислота обогащается энергией, активизируется, приобретает способность образовывать пептидные связи с соседней аминокислотой. Без процесса активизации аминокислоты полипептидная цепь из аминокислт сформироваться не может.

В противоположной, верхней части молекулы т-РНК содержится триплет нуклеотидов антикодон , с помощью которого т-РНК прикрепляется к комплементарному ему кодону (рис. 22).

Первая молекула т-РНК, с присоединенной к ней активизированной аминокислотой, своим антикодоном прикрепляется к кодону и-РНК, и в рибосоме оказывается одна аминокислота. Затем прикрепляется вторая т-РНК своим антикодоном к соответствующему кодону и-РНК. При этом в рибосоме оказываются уже 2 аминокислоты, между которыми формируется пептидная связь. Первая т-РНК покидает рибосому, как только отдаст аминокислоту в полипептидную цепь на рибосоме. Затем к дипептиду присоединяется 3-я аминокислота, ее приносит третья т-РНК и т. д. Синтез белка останавливается на одном из терминальных кодонов – УАА, УАГ, УГА (рис. 23).

1 – кодон и-РНК; кодоны UCG – УЦГ ; CUA – ЦУА ; CGU – ЦГУ ;

2– антикодон т-РНК; антикодон GAT – ГАТ

Рис . 21 . Фаза трансляции: кодон и-РНК притягивается к антикодону т-РНК соответствующими комплементарными нуклеотидами (основаниями)

Самовоспроизведение генетического материала. Репликация.

Принципы записи генетической информации. Генетический код и его свойства.

Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек в строго определенной последовательности. Эта последовательность определяет строение белка, а следоваетльно и его свойства. Набор аминокислот универсален почти для всех живых организмов.

Свойства ген. кода:

Триплетность- сочетание 3-х нуклеотидов

Непрерывность- между триплетами нет знаков препинания, т.е. информация считывается непрерывно

Неперекрываемость- один и тот же нуклеотид не может одновременно входить в состав нескольких триплетов

Специфичность- определенный кодон соответствует только 1 аминокислоте

Вырожденность- одной и той же аминокислоте может соответствовать несколько кодонов

Универсальность- генетический код работает одинаково в организмах разного уровня сложности

Помехоустойчивость

В процессе репликации генетического материала водородные связи между азотистыми основаниями разрываются, и из двойной спирали образуется две нити ДНК. Каждая из них становится матрицей для синтеза другой комплементарной нити ДНК. Последняя, через водородную связь, соединяется с матричной ДНК. Итак, любая дочерняя молекула ДНК состоит из одной старой и одной новой полинуклеотидной цепи. В результате дочерние клетки получают такую же генетическую информацию, как и у родительских клеток. Поддержание такой ситуации обеспечивается механизмом самокоррекции, осуществляемым ДНК-полимеразой. Способность генетического материала, ДНК, к самовоспроизведению (репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называются генными мутациями.

Изменения структуры ДНК можно разделить на 3 группы: 1. Замена одних оснований другими.

2. сдвиг рамки считывания при изменении количества нуклеотидных пар в составе гена.

3. изменение порядка нуклеотидных последовательностей в пределах гена.

1. Замена одних оснований другими. Могут возникать случайно или под влиянием конкретных химических агентов. Если измененная форма основания остается незамеченной во время репарации, то при ближайшем цикле репликации она может присоединить к себе другой нуклеотид.



Другой причиной может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего измененную форму основания или его аналог. Если эта ошибка остается незамеченной во время репарации, то измененное основание включается в процесс репликации что приводит к замене одной пары на другую.

Вследствие образуется новый триплет в ДНК. Если этот триплет кодирует ту же аминокислоту, то изменения не отразятся на структуре пептида (вырожденность генетического кода). Если вновь возникший триплет кодирует другую аминокислоту, изменяется структура пептидной цепи и свойства белка.

2. сдвиг рамки считывания. Эти мутации происходят из-за выпадения (делеция) или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Причиной может быть воздействие на генетический материал некоторых химических веществ (акридиновых соединений). Большое число мутаций происходит вследствие включения в ДНК подвижных генетических элементов – транспозонов. Так же причиной могут послужить ошибки при рекомбинации при неравноценном внутригенном кроссинговере.

При таких мутациях изменяется смысл биологической информации, записанной в данной ДНК.

3. изменение порядка нуклеотидных последовательностей. Данный тип мутаций происходит вследствие поворота участка ДНК на 180ᵒ (инверсия). Это происходит из-за того что молекула ДНК образует петлю, в пределах которой репликация идет в неправильном направлении. В пределах инвертированного участка нарушается считывание информации и нарушается аминокислотная последовательность белка.

Причины: -неравный кроссинговер между гомологичными хромосомами

Внутрихромосомный кроссинговер

Разрывы хромосом

Разрывы с последующим соединением элементов хромосом

Копирование гена и его перенос в другой участок хромосомы

С апреля этого года ДНК человека начала проходить свою более интенсивную мутацию под воздействием нарастающей Солнечной активности. Точнее сказать - трансмутирование клеток всего живого на планете идёт уже десятки лет. Но пишу это потому, что многие бывают напуганы, пытаются искать врачей, не в силах распознать в своём физическом теле процесс изменений на глубоком уровне. А лечение не работает, правительственные медицинские предложения не работают: это всё не соответствует вызовам, которые предлагает человеку… Солнце.

Эти симптомы возникают и исчезают неожиданно, появляются без причин, проходят сами. Это хорошие знаки: тело посылает вам весточку о том, что оно освобождается от старой биологии и от старого мышления. Не отставайте от него)

Симптомы, возникающие при мутации (перестройке) ДНК и изменениях тела на клеточном уровне:

Чувство усталости или опустошенности при незначительных нагрузках.
- желание спать дольше или чаще, чем обычно.
- симптомы гриппозного состояния - высокая температура, пот, боли в костях и суставах и т.д. И всё это не поддается лечению антибиотиками.
- головокружение
- звон в ушах

Важный симптом - боли в сердце, сердечная аритмия, которая происходит из-за корректировки сердца для новых энергий.

Сегодня у переходного человека время открытия 4-ой сердечной чакры, чакры любви и сострадания. Она часто заблокирована (у 90 % обычных людей!), и её активация может сопровождаться приступами тоски, страха. Сердечная чакра связана с вилочковой железой. Этот орган находится в передней части легких и у большинства пребывает в зачаточном состоянии. Она не развивалась вообще. Когда 4-я чакра начинает открываться, тимус начинает расти. На более поздней стадии это может быть даже видно при томографии.

Рост вилочковой железы связан с болями в груди, удушьем, опять же могут быть симптомы бронхита - пневмонии, при которых врачи ошибочно поставят диагноз грипп или пневмония.

Головные боли, мигрени;
- насморк с чиханием с утра до вечера, днями и месяцами;
- иногда - диарея;
- чувство, что все тело вибрирует - особенно, когда человек находится в расслабленном состоянии;
- интенсивные мышечные спазмы;
- покалывание - в руках или ногах;
- потеря мышечной силы - в руках, вызванная изменениями в системе циркуляции;
- иногда трудности дыхания, потребность дышать глубже, ощущение нехватки кислорода;
- изменения в иммунной системе;
- изменения лимфатической системы;
- ногти и волосы растут быстрее, чем обычно;
- приступы депрессии без реальных оснований;
- напряжение, беспокойство и высокий уровень стресса - чувствуешь, что что-то происходит, но не знаешь что это такое.

Иногда могут возникать признаки болезней, которые вы считали исцеленными давно. Это выходят корни недугов, которые сохранились на других информационных уровнях вашего тела. Болезнь может даже протекать остро, возможно, реверсно, но быстрее, чем шла, когда вы болели. Это значит, что тело избавляется от недуга на более глубоком уровне. Ваше тело весьма разумно, и часто разумнее вас самих!

Перевожу конспективно:

То, что происходит сегодня с человеком, с природой - это активация кода ДНК. Если вы назовёте это мутацией - то - да, это мутация. Причиной мутации становится возрастающая активность Солнца.

Симптомы солнечного воздействия: вертиго, мускульные боли и спазмы, боли в спине и шее, бицепсах, тремор, нервозность, возбуждение, панические атаки.

А также…

Простуда, слабость. Простуда - без лихорадки.
Речь. Трудно найти слова, трудность в том, чтобы соединить их.
Аномалии с едой.
Постоянное чувство голода
Острая потребность в сладком.
Вы хотите есть, но не можете.
Возбуждение.
Вы остро ощущаете возрастающую негативность повсюду, где много народу - в толпе, даже по телевизору - и от этого заболеваете.

Если вы “пострадали” от этого списка, у меня для вас хорошая новость: ваша ДНК интенсивно активируется!

А теперь, ЧТО ДЕЛАТЬ:

Главное - никакой паники! Гуляйте. Двигайтесь! Велосипед, бассейн, тренажеры… Или хотя бы глубокие приседания от 20 до 50 раз в день.
Обязательно - водные контрасты!
Обязательно ежедневно пить соду!
Можно, если помогает, гомеопатию!
Использование эфирных масел!
Массаж шиацу и т.п.

Делайте упражнения для шеи - голову вверх, вниз, вправо-влево, положите ухо на плечо, потом на другое. Старайтесь максимально!

Я скажу ещё чуть-чуть от себя: дышите правильно! А это целое искусство! Если чувствуете, что накатило - дышите глубоко, насколько можете и так медленно, как можете. И запомните этот совет для ситуации, когда придёт день Х, а он придёт. На автомате: если что - глубоко дышите. Чувствуете психическую или физическую кроличью нору - дышите! Запомните: у кого есть время - изучайте пранаямы.

А вот некоторые психофизические симптомы и попытка объяснить, как к этому относиться:

1. Чувство, как будто вы находитесь в скороварке интенсивной энергии и, как следствие, - стресс. Помните, чтобы приспособиться к более высокой вибрации, вы должны в конечном итоге измениться. Старые модели поведения и убеждения вылезают на поверхность в конфликтной форме. Управляйте своим поведением (самоконтроль!) с помощью мыслей-приказов. Укрощайте своё ЭГО, эмоции, чувства…

2. Чувство дезориентации, потеря чувства места. Вы не в 3d больше, а на “огненной передовой”! Как для тела, так и для духа!

3. Необычные боли в разных частях тела. Это освобождающиеся заблокированные раньше энергии вибрируют в 3d, пока вы вибрируете в более высоком измерении.

4. Пробуждение ночью между 2 и 4 часами. Многое происходит с нами во сне. С нашими физическими органами и тонкими телами работают в ходе ночного отдыха “космические целители”. Поэтому вам иногда даже может быть необходим перерыв во время этих интенсивных процессов, и вы просыпаетесь.

5. Забывчивость. Вы замечаете за собой, как у вас выпадают из памяти какие-то детали. И это ещё мягко говоря! Дело в том, что время от времени вы находитесь в пограничной зоне, в более чем одном измерении, болтаетесь туда-сюда, и память физическая может в эти моменты просто быть блокирована.
Кроме того: Прошлое - это часть старого, а старое навсегда ушло.

6. Потеря идентичности. Вы пытаетесь получить доступ к себе прошлому, но это уже невозможно. Вы иногда можете поймать себя на ощущении, что вы не знаете, кто это, глядя на себя в зеркало.

7. Опыт “вне тела”. Вы можете чувствовать, как будто кто-то говорит за вас, но это не вы. Это естественный защитный механизм выживания, когда вы находитесь в состоянии стресса. Организм испытывает большой прессинг, и вы “в моменте” на доли секунды как будто покидаете тело. Значит, вы не должны испытывать то, через что проходит ваше тело сейчас. Это длится не больше мгновения и проходит.

8. Повышенная чувствительность к окружающей обстановке. Толпа, шум, еда, машины, ТВ, громкие голоса - всё это вы едва уже можете выносить. Вы легко впадаете в состояние подавленности и, наоборот, с легкостью становитесь взвинчены и гипервозбуждены.
Ваша психика настраивается на новые более тонкие вибрации! Помогите себе разными способами релаксации!

9. Вам не хочется ничего делать? Это не лень и не депрессия. Это ‘перезагрузка’ вашего биокомпьютера. Не насилуйте себя. Ваше тело знает, что ему нужно. ОТДЫХ!

10. Нетерпимость к нижним колебательным явлениям 3d, разговорам, отношениям, общественным структурам и т.д. Они буквально заставляют Вас чувствовать себя больным. Вы растёте, и больше не совпадаете со многим и многими из того, что вас окружало раньше и вовсе не раздражало как теперь. Оно само отпадёт, не волнуйтесь.

11. Внезапное исчезновение каких-то друзей из вашей жизни, изменение привычек, работы, места жительства, рациона питания… Вы духовно поднимаетесь, и эти люди больше не соответствуют вашим вибрациям. Скоро придет НОВОЕ и будет намного лучше.

12. Дни или периоды сильной усталости. Ваше тело теряет плотность, утончается, проходит интенсивную перестройку.

13. Если вы чувствуете атаки низкого уровня сахара в крови, ешьте чаще. Наоборот, вы можете вовсе не хотеть есть.

14. Эмоциональная дестабилизация, слезливость… Все эмоции, которые вы переживали раньше и копили в себе, выходят. Радуйтесь! Не сдерживайте их выход!

15. Ощущение, что “едет крыша”. Ничего страшного. Вы открываете внетелесный опыт и экспириенс других частот - то есть реальностей. Многое стало доступнее вам сейчас. Вы просто не привыкли к этому. Ваши внутренние знания и интуиция крепнут и барьеры исчезают.

16. Беспокойство и паника. Ваше ЭГО теряет бОльшую часть себя и боится.
Ваша физиологическая система испытывает перегрузки. Что-то происходит с вами, что вы не можете понять до конца, но допустИте ЭТО!..

17. Вы также теряете модели поведения низких вибраций, которые вы для себя разработали для выживания в 3d. Это может заставить вас чувствовать себя уязвимым и беспомощным. Эти образцы и модели поведения скоро совсем не будут вам нужны. Просто наберитесь терпения и покоя, подождите.

18. Депрессии. Внешний мир не соответствует вашим потребностям и эмоциям. Вы выпускаете темные энергии, которые были внутри вас. Не пугайтесь и не препятствуйте их выходу, а постарайтесь трансформировать, чтобы они не причинили вреда другим.

19. Сны. Многие отдают себе отчёт, что они переживают необычно интенсивные сны.

20. Неожиданное бросание в пот и скачки температуры. Ваше тело меняет систему “отопления”, сгорают клеточные шлаки, сжигаются остатки прошлого в ваших тонких полях.

21. Ваши планы внезапно меняются в середине пути, и вы начинаете идти в совершенно ином направлении. Ваша душа пытается сбалансировать вашу энергию. Ваша душа знает больше, чем вы. Слушайте и доверяйте своему сердцу!

В вашем СОЗНАНИИ находятся подавленные, неудовлетворённые потребности в ДОБРОТЕ, СОВЕРШЕНСТВЕ, ЦЕЛОСТНОСТИ, ЗАКОНЕ, СПРАВЕДЛИВОСТИ И ПОРЯДКЕ. Возможно, из-за этого у вас возникли или могут возникнуть такие патологические состояния, как АНТИПАТИЯ, НЕДОВЕРИЕ, РАСЧЁТ ТОЛЬКО НА СЕБЯ И ДЛЯ СЕБЯ, ДЕЗИНТЕГРАЦИЯ, ГНЕВ, ЦИНИЗМ, махровый ЭГОИЗМ…

Знаете, какого “лекарства” вам действительно не хватает? ЗНАНИЙ!

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.