Физическая химия как наука. Предмет физической химии. Её значение. Теория реакционной способности химических соединений

Содержание статьи

ХИМИЯ ФИЗИЧЕСКАЯ, раздел химии, в котором изучаются химические свойства веществ на основе физических свойств составляющих их атомов и молекул. Современная физическая химия – широкая междисциплинарная область, граничащая с различными разделами физики, биофизики и молекулярной биологии. Она имеет множество точек соприкосновения и с такими разделами химической науки, как органическая и неорганическая химия.

Отличительная особенность химического подхода (в противоположность физическому и биологическому) заключается в том, что в его рамках, наряду с описанием макроскопических явлений, объясняется их природа исходя из свойств отдельных молекул и взаимодействий между ними.

Новые инструментальные и методологические разработки в области физической химии находят применение в других разделах химии и смежных науках, например фармакологии и медицине. В качестве примеров можно привести электрохимические методы, инфракрасную (ИК-) и ультрафиолетовую (УФ-) спектроскопию, лазерную и магниторезонансную технику, которые широко используются в терапии и для диагностики различных заболеваний.

Основными разделами физической химии традиционно считаются: 1) химическая термодинамика; 2) кинетическая теория и статистическая термодинамика; 3) вопросы строения молекул и спектроскопия; 4) химическая кинетика.

Химическая термодинамика.

Химическая термодинамика непосредственно связана с применением термодинамики – науки о теплоте и ее превращениях – к проблеме химического равновесия. Суть проблемы формулируется следующим образом: если имеется смесь реагентов (система) и известны физические условия, в которых она находится (температура, давление, объем), то какие самопроизвольные химические и физические процессы могут привести эту систему к равновесию? Первый закон термодинамики гласит, что теплота есть одна из форм энергии и что полная энергия системы (вместе с ее окружением) остается неизменной. Таким образом, этот закон является одной из форм закона сохранения энергии. Согласно второму закону, самопроизвольно протекающий процесс приводит к возрастанию общей энтропии системы и ее окружения. Энтропия – это мера того количества энергии, которое система не может потратить на совершение полезной работы. Второй закон указывает направление, по которому пойдет реакция без каких-либо внешних воздействий. Чтобы изменить характер реакции (например, ее направление), нужно затратить энергию в той или иной форме. Таким образом, он налагает строгие ограничения на величину работы, которая может быть совершена в результате преобразования теплоты или химической энергии, выделяющихся в обратимом процессе.

Важными достижениями в химической термодинамике мы обязаны Дж.Гиббсу, который заложил теоретический фундамент этой науки, позволившей объединить в единое целое результаты, полученные многими исследователями предыдущего поколения. В рамках разработанного Гиббсом подхода не делается никаких допущений о микроскопической структуре материи, а рассматриваются равновесные свойства систем на макроуровне. Вот почему можно думать, что первый и второй законы термодинамики носят универсальный характер и останутся справедливыми даже тогда, когда мы узнаем гораздо больше о свойствах молекул и атомов.

Кинетическая теория и статистическая термодинамика.

Статистическая термодинамика (как и квантовая механика) позволяет предсказать положение равновесия для некоторых реакций в газовой фазе. С помощью квантовомеханического подхода удается описать поведение сложных молекул ряда веществ, находящихся в жидком и твердом состоянии. Однако существуют реакции, скорость которых не может быть рассчитана ни в рамках кинетической теории, ни с помощью статистической термодинамики.

Настоящая революция в классической статистической термодинамике произошла в 70-х годах 20 в. Новые концепции, такие, как универсальность (представление о том, что члены некоторых широких классов соединений обладают одинаковыми свойствами) и принцип подобия (оценка неизвестных величин исходя из известных критериев), позволили лучше понять поведение жидкостей вблизи критической точки, когда исчезает различие между жидкостью и газом. С помощью ЭВМ были смоделированы свойства простых (жидкий аргон) и сложных (вода и спирт) жидкостей в критическом состоянии. Сравнительно недавно свойства таких жидкостей, как жидкий гелий (поведение которых прекрасно описывается в рамках квантовой механики), и свободных электронов в молекулярных жидкостях были всесторонне исследованы с применением компьютерного моделирования СВЕРХПРОВОДИМОСТЬ) . Это позволило лучше понять свойства обычных жидкостей. Компьютерные методы в сочетании с новейшими теоретическими разработками интенсивно используются для изучения поведения растворов, полимеров, мицелл (специфических коллоидных частиц), белков и ионных растворов. Для решения задач физической химии, в частности для описания некоторых свойств систем в критическом состоянии и исследования вопросов физики высоких энергий, все чаще применяется математический метод ренормализационной группы .

Строение молекул и спектроскопия.

Химики-органики 19 в. разработали простые правила определения валентности (способности к объединению) многих химических элементов. Например, они установили, что валентность углерода равна 4 (один атом углерода может присоединить четыре атома водорода с образованием молекулы метана CH 4), кислорода – 2, водорода – 1. Исходя из эмпирических представлений, основанных на опытных данных, высказывались предположения о пространственном расположении атомов в молекулах (например, молекула метана имеет тетраэдрическую структуру, при этом атом углерода находится в центре треугольной пирамиды, а водород – в четырех ее вершинах). Однако этот подход не позволял раскрыть механизм образования химических связей, а значит, оценить размеры молекул, определить точное расстояние между атомами.

С помощью спектроскопических методов, разработанных в 20 в., была определена структура молекул воды (H 2 O), этана (C 2 H 6), а затем и гораздо более сложных молекул, таких, как белки. Методы СВЧ-спектроскопии (ЭПР, ЯМР) и электронной дифракции позволили установить длины связей, углы между ними (валентные углы) и взаимное расположение атомов в простых молекулах, а рентгеноструктурный анализ – аналогичные параметры для более крупных молекул, образующих молекулярные кристаллы. Составление каталогов молекулярных структур и использование простых представлений о валентности заложили основы структурной химии (пионером ее был Л.Полинг) и дали возможность использовать молекулярные модели для объяснения сложных явлений на молекулярном уровне. Если бы молекулы не имели определенной структуры или если бы параметры связей C–C и С–H в хромосомах сильно отличались от таковых в молекулах метана или этана, то с помощью простых геометрических моделей Дж.Уотсон и Ф.Крик не смогли бы построить в начале 1950-х годов свою знаменитую двойную спираль – модель дезоксирибонуклеиновой кислоты (ДНК). Исследуя методами ИК- и УФ-спектроскопии колебания атомов в молекулах, удалось установить природу сил, удерживающих атомы в составе молекул, что, в свою очередь, навело на мысль о наличии внутримолекулярного движения и позволило исследовать термодинамические свойства молекул (см. выше ). Это был первый шаг к определению скоростей химических реакций. Далее, спектроскопические исследования в УФ-области помогли установить механизм образования химической связи на электронном уровне, что позволило описывать химические реакции, основываясь на представлении о переходе реагентов в возбужденное состояние (часто под действием видимого или УФ-света). Возникла даже целая научная область – фотохимия. Спектроскопия ядерного магнитного резонанса (ЯМР) дала возможность химикам исследовать отдельные стадии сложных химических процессов и идентифицировать активные центры в молекулах ферментов. Этот метод позволил также получить трехмерные изображения интактных клеток и отдельных органов. ФОТОХИМИЯ.

Теория валентности.

Используя эмпирические правила валентности, разработанные химиками-органиками, периодическую систему элементов и планетарную модель атома Резерфорда, Г.Льюис установил, что ключом к пониманию химической связи является электронная структура вещества. Льюис пришел к выводу, что ковалентная связь образуется в результате обобществления электронов, принадлежащих разным атомам; при этом он исходил из представления о том, что связывающие электроны находятся на строго определенных электронных оболочках. Квантовая теория позволяет предсказать структуру молекул и характер образующихся ковалентных связей в самом общем случае .

Наши представления о строении вещества, сформировавшиеся благодаря успехам квантовой физики в первой четверти 20 в., можно вкратце изложить следующим образом. Структура атома определяется балансом электрических сил отталкивания (между электронами) и притяжения (между электронами и положительно заряженным ядром). Почти вся масса атома сосредоточена в ядре, а его размер определяется объемом пространства, занятого электронами, которые вращаются вокруг ядер. Молекулы состоят из относительно стабильных ядер, удерживаемых вместе быстро движущимися электронами, так что все химические свойства веществ можно объяснить исходя из представления об электрическом взаимодействии элементарных частиц, из которых состоят атомы и молекулы. Таким образом, главные положения квантовой механики, касающиеся строения молекул и образования химических связей, создают основу для эмпирического описания электронной структуры вещества, природы химической связи и реакционной способности атомов и молекул .

С появлением быстродействующих вычислительных машин удалось рассчитать (с невысокой, но достаточной точностью) силы, действующие между атомами в малых многоатомных молекулах. Теория валентности, опирающаяся на компьютерное моделирование, в настоящее время является рабочим инструментом для исследований структур, природы химических сил и реакций в тех случаях, когда проведение экспериментов затруднено или требует больших затрат времени. Это относится к исследованию свободных радикалов, присутствующих в атмосфере и пламени или образующихся как промежуточные продукты реакций. Есть надежда, что когда-нибудь теория, опирающаяся на компьютерные расчеты, сможет ответить на вопрос: каким образом за время порядка пикосекунд химические структуры «вычисляют» свое наиболее стабильное состояние, тогда как для получения соответствующих оценок хоть в каком-то приближении требуется огромное количество машинного времени.

Химическая кинетика

занимается изучением механизма химических реакций и определением их скоростей. На макроскопическом уровне реакцию можно представить в виде последовательных превращений, в ходе которых из одних веществ образуются другие. Например, кажущееся простым превращение

H 2 + (1/2) O 2 → H 2 O

на самом деле состоит из нескольких последовательных стадий:

H + O 2 → OH + O

O + H 2 → HO + H

H + O 2 → HO 2

HO 2 + H 2 → H 2 O + OH

и каждая из них характеризуется своей константой скорости k . С.Аррениус предположил, что абсолютная температура T и константа скорости реакции k связаны соотношением k = A exp(- E акт)/RT , где А – предэкспоненциальный множитель (т.н. частотный фактор), Е акт – энергия активации, R – газовая постоянная. Для измерения k и Т нужны приборы, позволяющие отслеживать события, которые происходят за время порядка 10 –13 с, с одной стороны, и за десятилетия (и даже тысячелетия) – с другой (геологические процессы); необходимо также уметь измерять ничтожно малые концентрации чрезвычайно нестабильных реагентов. В задачу химической кинетики входит, кроме того, прогнозирование химических процессов, протекающих в сложных системах (речь идет о биологических, геологических, атмосферных процессах, о горении и химическом синтезе).

Для исследования газофазных реакций «в чистом виде» применяют метод молекулярных пучков; в этом случае молекулы со строго определенными квантовыми состояниями реагируют с образованием продуктов, тоже находящихся в определенных квантовых состояниях. Такие эксперименты позволяют получить информацию о силах, обусловливающих протекание определенных реакций. Например, в молекулярно-пучковой установке можно ориентировать заданным образом даже такие малые молекулы, как CH 3 I, и измерить скорости столкновения в двух «разных» реакциях:

K + ICH 3 → KI + CH 3

K + CH 3 I → KI + CH 3

где CH 3 -группа ориентирована по-разному относительно приближающегося атома калия.

Один из вопросов, которым занимается физическая химия (а также химическая физика), – расчет констант скоростей реакции. Здесь широко применяется разработанная в 1930-х годах теория переходного состояния, в которой используются термодинамические и структурные параметры. Эта теория в сочетании с методами классической физики и квантовой механики позволяет моделировать ход реакции, как если бы она протекала в условиях эксперимента с молекулярными пучками. Проводятся опыты по лазерному возбуждению определенных химических связей, позволяющие проверить правильность статистических теорий деструкции молекул. Разрабатываются теории, обобщающие современные физические и математические концепции хаотических процессов (например, турбулентности). Мы уже не так далеки от того, чтобы до конца понять природу как внутри-, так и межмолекулярных взаимодействий, раскрыть механизм реакций, протекающих на поверхностях с заданными свойствами, установить структуру каталитических центров ферментов и комплексов переходных металлов. Что касается микроскопического уровня, можно отметить работы по изучению кинетики образования таких сложных структур, как снежинки или дендриты (кристаллы с древовидной структурой), которые стимулировали развитие компьютерного моделирования, основанного на простых моделях теории нелинейной динамики; это открывает перспективы создания новых подходов к описанию строения и процессов развития сложных систем.

ФИЗИЧЕСКАЯ ХИМИЯ - раздел химии, посвященный изучению взаимосвязи химических и физических явлений в природе. Положения и методы Ф. х. имеют важное значение для медицины и медико-биологических наук, методы Ф. х. используются для изучения жизненных процессов как в норме, так и при патологии.

Основными предметами изучения Ф. х. являются строение атомов (см. А том) и молекул (см. Молекула), природа хим. связей, хим. равновесие (см. Равновесие химическое) и кинетика (см. Кинетика химическая, Кинетика биологических процессов), катализ (см.), теория газов (см.), жидкостей и растворов (см.), структура и хим. свойства кристаллов (см.) и полимеров (см. Высокомолекулярные соединения), термодинамика (см.) и тепловые эффекты хим. реакций (см. Термохимия), поверхностные явления (см. Детергенты, Поверхностное натяжение, Смачивание), свойства р-ров электролитов (см.), электродные процессы (см. Электроды) и электродвижущие силы, коррозия металлов, фотохим. и радиационные процессы (см. Фотохимические реакции, Электромагнитное излучение). Большинство теорий Ф. х. базируется на законах статики, квантовой (волновой) механики и термодинамики. При изучении поставленных проблем в Ф. х. широко применяют различные сочетания экспериментальных методов физики и химии, так наз. физ.-хим. методы анализа, основы к-рых были разработаны в 1900-1915 гг.

К наиболее распространенным фи-зико-химическихм методам второй половины 20 в. относятся электронный парамагнитный резонанс (см.), ядерный магнитный резонанс (см.), масс-спектрометрия (см.), использование эффекта Мессбауэ-ра (ядерный гамма-резонанс), радиоспектроскопия (см. Спектроскопия), спектрофотометрия (см.) и флюориметрия (см.), рентгеноструктурный анализ (см.), электронная микроскопия (см.), улыпрацентрифу-гирование (см.), газовая и жидкостная хроматография (см.), электрофорез (см.), изоэлектрическое фокусирование (см.), полярография (см.), потенциометрия (см. Потенциометрическое титрован ие), кондуктомет-рия (см.), осмометрия (см. Осмотическое давление), эбулли ометрия (см.) и др.

Термин «физическая химия» впер-вые появился в трудах нем. алхимика Кунрата (H. Kuhnrath, 1599), однако долгое время смысл, вкладываемый в этот термин, не соответствовал истинному его значению. Задачи Ф. х., близкие к их современному пониманию, впервые сформулировал М. В. Ломоносов в курсе «Введение в истинную физическую химию», прочитанном им в 1752 г. студентам Петербургской акадехмии наук: физическая химия, по М. В. Ломоносову, есть наука, объясняющая на основании положений и опытов физики то, что происходит в смешанных телах при хим. реакциях. Систематическое преподавание Ф. х. было начато с 1860 г. в Харьковском ун-те H. Н. Бекетовым, к-рый впервые на естественном ф-те этого ун-та организовал физико-химическое отделение. Вслед за Харьковским ун-том преподавание Ф. х. было введено в Казанском (1874), Юрьевском (1880) и Московском (1886) ун-тах. С 1869 г. начинает выходить журнал Русского физико-химического об-ва. За рубежом кафедра физической химии впервые была учреждена в Лейпциге в 1887 г.

Формирование Ф. х. как самостоятельной научной дисциплины связано с атомно-молекулярным учением, т. е. прежде всего с открытием в 1748-1756 гг. М. В. Ломоносовым и в 1770-1774 гг. А. Лавуазье закона сохранения массы веществ при хим. реакциях. Работы Рихтера (J. В. Richter, 1791 - 1802), открывшего закон паев (эквивалентов), Пруста (J. L. Proust, 1808), открывшего закон постоянства состава, и др. способствовали созданию в 1802-1810 гг. Дж. Дальтоном атомной теории и открытию закона кратных отношений, устанавливающего закономерности образования хим. соединений. В 1811 г. Авогадро (A. Avogadro) ввел понятие «молекула», связывающее атомную теорию строения вещества с законами идеальных газов. Логическим завершением формирования атомистических взглядов на природу материи явилось открытие Д. И. Менделеевым в 1869 г. периодического закона хим. элементов (см. Периодическая система химических элементов).

Современное представление о строении атома сложилось в начале

20 в. Наиболее важными вехами на этом пути являются экспериментальное открытие электрона и установление его заряда, создание квантовой теории (см.) Планком (М. Plank) в 1900 г., работы Бора (N. Bohr, 1913), предположившего существование у атома электронной оболочки и создавшего его планетарную модель, и другие исследования, послужившие подтверждением квантовой теории строения атома. Завершающим этапом формирования современных представлений о строении атома явилась разработка квантовой (волновой) механики, с помощью методов к-рой в последующем удалось объяснить природу и направленность хим. связей, теоретически рассчитать физ.-хим. константы простейших молекул, развить теорию межмолекулярных сил и др.

Первоначальное развитие хим. термодинамики, изучающей законы взаимных превращений различных форм энергии в равновесных системах, связано с исследованиями Карно (S. Carnot) в 1824 г. Дальнейшие работы Майера (R. Mayer), Джоуля (J. Joule) и Г. Гельмгольца привели к открытию закона сохранения энергии - так наз. первого начала, или первого закона термодинамики. Введение Клаузиусом (R. Clausius) в 1865 г. понятия «энтропия» как меры свободной энергии, привело к разработке второго закона термодинамики. Третий основной закон термодинамики был выведен из тепловой теоремы Нернста об асимптотическом сближении свободной энергии и теплосодержания системы, в 1907 г. Эйнштейн (A. Einstein) составил уравнение теплоемкости простых гармонических осцилляторов, а в

1911 г. Планком был сделан вывод: энтропия чистых веществ при абсолютном нуле равна нулю.

Начало самостоятельному существованию термохимии - науки о тепловых эффектах хим. реакций, было положено трудами Г. И. Гесса, установившего в 1840 г. закон постоянства сумм теплоты. Большое значение для развития термохимии имели труды Бертло (Р. E. М. Berthelot), к-рый разработал калориметрические методы анализа (см. Калориметрия) и открыл принцип максимальной работы. В 1859 г. Кирхгоф (H. Kirch-hoff) сформулировал закон, связывающий тепловой эффект реакции с теплоемкостями реагирующих веществ и продуктов реакции. В 1909-

1912 гг. Нернст (W. H. Nernst), Эйнштейн и Дебай (P. Debye) разработали теорию квантовой теплоемкости.

Развитие электрохимии, занимающейся изучениехМ связи между химическими и электрическими явлениями и исследованием действия электрического тока на различные вещества в р-рах, связано с созданием Вольтой (A. Volta) в 1792-1794 гг. гальванического элемента. В 1800 г. появились первые работы Никольсо-на (V. Nicolson) и Карлейля (А. Каг-leil) по разложению воды, а в 1803- 1807 гг. работы И. Берцелиуса и Ги-зингера (W. Hisinger) об электролизе (см.) р-ров солей. В 1833-1834 гг. Фарадей (М. Faraday) сформулировал основные законы электролиза, связывающие выход электрохим. реакций с количеством электричества и хим. эквивалентами веществ. В 1853-1859 гг. Гитторф (J. W. Hittorf) установил зависимость между электрохим. действием и подвижностью ионов, а в 1879 г. Кольрауш (F. W. Kohlrausch) открыл закон независимого движения ионов (см.) и установил связь между эквивалентной электропроводностью и подвижностью катионов и анионов. В 1875 - 1878 гг. Гиббс (J. VV. Gibbs) и в 1882 г. Г. Гельмгольц разработали математическую модель, связывающую электродвижущую силу гальванического элемента с внутренней энергией хим. реакций. В 1879 г. Г. Гельмгольц создал учение о двойном электрическом слое. В 1930-1932 гг. Фольмер (М. Vol-mer) и А. Н. Фрумкин предложили количественную теорию электродных процессов.

Начало учению о растворах было положено работами Гассенфратца (J. H. Hassenfratz, 1798) и Ж. Гей-Люссака (1819) о растворимости солей. В 1881 -1884 гг. Д. П. Коновалов заложил научные основы теории и практики перегонки р-ров, а в 1882 г. Рауль (F. М. Raoult) открыл закон понижения температуры замерзания растворов (см. Криометрия). Первые количественные измерения осмотического давления (см.) были произведены в 1877 г. Пфеффером (W. F. Ph. Pfeffer), а в 1887 г. Я. Вант-Гофф создал термодинамическую теорию разбавленных р-ров и вывел уравнение, связывающее осмотическое давление с концентрацией р-ра, его объемом и абсолютной температурой. С. Аррениус в 1887 г. сформулировал теорию электролитической диссоциации и ионизации солей в р-рах (см. Электролиты), а Нернст в 1888 г.- осмотическую теорию. Оствальд (W. Ostwald) обнаружил закономерности, связывающие степень диссоциации электролита с его концентрацией. В 1911 г. Доннан (F. G. Don-пап) создал теорию распределения электролитов по обе стороны полупроницаемой мембраны (см. Мембранное равновесие), к-рая нашла широкое применение в биофизической химии (см.) и коллоидной химии (см.). В 1923 г. Дебай и Гюккель (E. Huckel) разработали статистическую теорию сильных электролитов.

Развитие учения о кинетике хим. реакций, равновесии и катализе началось с работ Вильгельми (L. Wil-helmy), создавшего в 1850 г. первую количественную теорию хим. реакций, и Вильямсона (A. W. Williamson), представившего равновесие как состояние равенства скоростей прямой и обратной реакций. Понятие «катализ» было введено в физическую хихмию И. Берцелиусом в

1835 г. Основные принципы учения

о хим. равновесии были сформулированы в трудах Бертолле (С. L. Вег-thollet). Начало динамической теории равновесий положено работами Вильямсона и Клаузиуса, принцип подвижного равновесия разработан Я. В ант-Гоффом, Гиббсом и Ле Ша-телье (H. Le Chatelier). Бертло и Пеан-сен-Жиль (L. Pean-saint-Gilles) установили связь между скоростью реакции и состоянием равновесия. Основной закон хим. кинетики о пропорциональности скорости реакции произведению активных масс (т. е. концентраций) реагирующих веществ - закон действующих масс - был сформулирован в 1864-1867 гг. Гульдбергом (С. М. Guldberg) и Ваа-ге (P. Waage). В 1893-1897 гг. А. Н. Бах и Энглер (К. Engler) создали перекисную теорию медленного окисления (см. Перекиси), в 1899- 1904 гг. Абегг (R. Abegg) и Бодлендер (H. Bodlander) развили представление о валентности как способности атома принимать или отдавать электроны, в 1913-1914 гг. Л. В. Писар-жевский и С. В. Дайн разработали электронную теорию окислительно-восстановительных реакций (см.). В 1903-1905 гг. Н. А. Шилов предложил теорию сопряженных реакций, а в 1913 г. Боденштейн (М. Во-denstein) открыл цепные реакции (см.), теоретические основы протекания к-рых были разработаны в 1926 -1932 гг. H. Н. Семеновым и Хиншелвудом (С. N. Hinsheiwood).

Явление радиоактивного распада атомов (радиоактивности) было открыто в 1896 г. А. Беккерелем. С тех пор изучению радиоактивности (см.) уделяется большое внимание и в этой области достигнуты существенные успехи, начиная с искусственного расщепления атомов и кончая разработками по управляемому термоядерному синтезу. Среди проблем Ф. х. необходимо выделить изучение влияния на молекулы гамма-излучений (см.), потока частиц высоких энергий (см. Альфа-излучение, Ясс-мическое излучение, Нейтронное излучение, Лротонное излучение), лазерного излучения (см. Лазер), а также изучение реакций в электрических разрядах и низкотемпературной плазме (плазмохимия). Успешно развивается физ.-хим. механика, исследующая влияние поверхностных явлений на свойства твердых тел.

Один из разделов Ф. х.- фотохимия (см.), изучает реакции, протекающие при поглощении веществом световой энергии от внешнего источника излучения.

В Ф. х. нет такого раздела, к-рый бы не имел значения для медико-биол. дисциплин и в конечном счете для практической медицины (см. Биофизическая химия). Физ.-хим. методы позволяют изучать живую клетку и ткани in vivo, не подвергая их разрушению. Не меньшее значение для медицины имеют физ.-хим. теории и представления. Так, учение об осмотических свойствах р-ров оказалось чрезвычайно существенным для понимания водного обмена (см. Водно-солевой обмен) у человека в норме и при патологии. Создание теории электролитической диссоциации существенно повлияло на представление о биоэлектрических явлениях (см.) и положило начало ионной теории возбуждения (см.) и торможения (см.). Теория кислот, и оснований (см.) дала возможность объяснить постоянство внутренней среды организма и послужила основой для изучения кислотно-щелочного равновесия (см.). Для понимания энергетики жизненных процессов (напр., функционирования АТФ) широко используют исследования, осуществляемые с помощью методов хим. термодинамики. Развитие физ.-хим. представлений о поверхностных процессах (поверхностном натяжении, смачивании и др.) существенно для понимания реакций клеточного иммунитета (см.), распластывания клеток на неклеточных поверхностях, адгезии и др. Теория и методы хим. кинетики являются основой для изучения кинетики биологических, прежде всего ферментативных, процессов. Большую роль в понимании сущности биол. процессов играет изучение биолюминесценции, хемолюминесценции (см. Биохемилюминесценция), использование люминесцирующих антител (см. Иммунофлюоресценция), флюо-р охр омов (см.) и др. для изучения свойств тканевой и субклеточной локализации белков, нуклеиновых к-т и др. Физ.-хим. методы определения интенсивности основного обмена (см.) чрезвычайно важны при диагностировании многих заболеваний, в т. ч. эндокринных.

Необходимо отметить, что изучение физ.-хим. свойств биол. систем и процессов, протекающих в живом организме, дает возможность глубже заглянуть в суть и выявить специфику живой материи и этих явлений.

Основными исследовательскими центрами в области физической химии в СССР являются научно-исследовательские ин-ты АН СССР, ее филиалов и отделений, АН союзных республик: Физико-химический ин-т им. Л. Я. Карпова, Ин-т физической химии, Ин-т химической физики, Ин-т новых химических проблем, Ин-т органической и физической химии им. А. Е. Арбузова, Ин-т катализа, Ин-т химической кинетики и горения, Ин-т физической химии АН УССР и др., а также соответствующие кафедры в ун-тах.

Основными печатными органами, систематически публикующими статьи по Ф. х., являются: «Журнал физической химии», «Кинетика и катализ», «Журнал структурной химии», «Радиохимия», «Электрохимия». За рубежом статьи по Ф. х. печатаются в «Zeitschrift fiir physi-kalische Chemie», «Journal of Physical Chemistry», «Journal de chimie physique et de physico-chimie bio-logique».

Библиогр.: Бабко А. К. и др.

Физико-химические методы анализа, М., 1968; Киреев В. А. Курс физической химии, М., 1975; Мелвин-Хьюз

Э. А. Физическая химия, пер. с англ., т. 1 - 2, М., 1962; Николаев Л. А. Физическая химия, М., 1972; Развитие

физической химии в СССР, под ред. Я. И. Герасимова, М., 1967; Соло

вьев Ю. И. Очерки по истории физической химии, М., 1964; Физическая

химия, Современные проблемы, под ред. Я. М. Колотыркина, М., 1980.

Периодические издания - Журнал структурной химии, М., с 1960; Журнал физической химии, М., с 1930; Кинетика и катализ, М., с 1960; Радиохимия, М.- Л., с 1959; Электрохимия, М., с 1965; Journal de chimie physique et de physico-chimie biologique, P., с 1903; Journal of Physical Chemistry, Baltimore, с 1896; Zeitschrift fiir physikalische Chemie, Lpz., с 1887.

Есть наука, объясняющая на основе положений и опытов физики то, что происходит в смешанных телах при химических операциях". Первый научный журнал, предназначенный для публикации статей по физической химии , был основан в 1887 В. Ост-вальдом и Я. Вант-Гоффом.

Ф изическая химия является основным теоретич. фундаментом совр. химии , опирающимся на такие важнейшие разделы физики, как квантовая механика , статистич. физика и термодинамика , нелинейная динамика, теория поля и др. Она включает учение о строении в-ва, в т.ч. о строении молекул , химическую термодинамику , кинетику химическую и катализ . В качестве отдельных разделов в физической химии часто выделяют также электрохимию , фотохимию , физическую химию поверхностных явлений (в т. ч. адсорбцию), радиационную химию , учение о коррозии металлов , физико-химию высокомол. соед. и др. Весьма близко примыкают к физической химии и подчас рассматриваются как ее самостоят. разделы коллоидная химия , физико-химический анализ и квантовая химия . Большинство разделов физической химии имеет достаточно четкие границы по объектам и методам исследования, по методологич. особенностям и используемому аппарату.

Совр. этапу развития физической химии присущи углубленный анализ общих закономерностей хим. превращений на мол. уровне, широкое использование мат. моделирования , расширение диапазона внеш. воздействий на хим. систему (высокие и криогенные т-ры, высокие давления , сильные радиац. и магн. воздействия), изучение сверхбыстрых процессов, способов накопления энергии в хим. в-вах и т. п.

Применение квантовой теории, прежде всего квантовой механики , при объяснении хим. явлений повлекло за собой значит. усиление внимания к уровню интерпретации и привело к выделению двух направлений в химии . Направление, опирающееся на квантовомех. теорию и оперирующее на микроскопич. уровне объяснения явлений, часто называют хим. физикой, а направление, оперирующее с ансамблями большого числа частиц, где в силу вступают статистич. законы,- физической химией . При таком подразделении граница между физической химияей и хим. физикой не м. б. проведена резко, что особенно проявляется в теории скоростей хим. р-ций.

Учение о строении в-ва и строении молекул обобщает обширный эксперим. материал, полученный при использовании таких физ. методов, как молекулярная спектроскопия , изучающая взаимод. электромагн. излучения с в-вом в разл. диапазонах длин волн, фото- и рентгеноэлектронная спектроскопия , электронография , нейтронография и рентгенодиффракционные методы, методы на основе магнитооптич. эффектов и др. Эти методы позволяют получать структурные данные об электронной конфигурации молекул , о равновесных положениях и амплитудах колебаний ядер в молекулах и конденсир. в-ве, о системе энергетич. уровней молекул и переходах между ними, об изменении геом. конфигураций при изменении окружения молекулы или отдельных ее фрагментов и т.д.

Наряду с задачей соотнесения свойств в-в с их строением совр. физическая химия активно занимается и обратной задачей прогнозирования строения соединений с заданными св-вами.

Весьма важным источником информации о строении молекул , их характеристиках в разл. состояниях и особенностях хим. превращений служат результаты квантовохим. расчетов. Квантовая химия дает систему понятий и представлений, к-рая используется в физической химии при рассмотрении поведения хим. соединений на мол. уровне и при установлении корреляций между характеристиками молекул , образующих в-во, и св-вами этого в-ва. Благодаря результатам квантовохим. расчетов пов-стей потенциальной энергии хим. систем в разл. квантовых состояниях и эксперим. возможностям последних лет, прежде всего развитию лазерной химии , физическая химия вплотную подошла к всестороннему изучению св-в соед. в возбужденных и высоковозбужденных состояниях, к анализу особенностей строения соед. в таких состояниях и специфики проявления этих особенностей в динамике хим. превращений.

Ограничением обычной термодинамики является то, что она позволяет описывать только равновесные состояния и обратимые процессы. Реальные необратимые процессы составляют предмет возникшей в 30-е гг. 20 в. термодинамики необратимых процессов . Эта область физической химии изучает неравновесные макроскопич. системы, в к-рых скорость возникновения энтропии локально сохраняется постоянной (такие системы локально близки к равновесным). Она позволяет рассматривать системы с хим. р-циями и переносом массы (диффузией), тепла, электрич. зарядов и т. п.

Химическая кинетика изучает превращения хим. в-в во времени, т. е. скорости хим. р-ций, механизмы этих превращений, а также зависимость хим. процесса от условий его осуществления. Она устанавливает закономерности измене ния состава превращающейся системы во времени, выявляет связь между скоростью хим. р-ции и внешними условиями, а также изучает факторы, влияющие на скорость и направление хим. р-ций.

Большинство хим. р-ций представляет собой сложные многостадийные процессы, состоящие из отдельных элементарных актов хим. превращения, транспорта реагентов и переноса энергии. Теоретич. хим. кинетика включает изучение механизмов элементарных р-ций и проводит расчет констант скоростей таких процессов на основе идей и аппарата классич. механики и квантовой теории, занимается построением моделей сложных хим. процессов, устанавливает связь между строением хим. соединений и их реакц. способностью. Выявление кинетич. закономерностей для сложных р-ций (формальная кинетика) базируется часто на мат. моделировании и позволяет осуществлять проверку гипотез о механизмах сложных р-ций, а также устанавливать систему дифференц. ур-ний, описывающих результаты осуществления процесса при разл. внеш. условиях.

Для хим. кинетики характерно использование многих физ. методов исследования, позволяющих проводить локальные возбуждения реагирующих молекул , изучать быстрые (вплоть до фемтосекундных) превращения, автоматизировать регистрацию кинетич. данных с одновременной обработкой их на ЭВМ и т. п. Интенсивно накапливается кинетич. информация через банки кинетич. констант , в т.ч. для хим. р-ций в экстремальных условиях.

Весьма важным разделом физической химии , тесно связанным с хим. кинетикой, является учение о катализе , т. е. об изменении скорости и направления хим. р-ции при воздействии в-в (

3-е изд., испр. - М.: Высшая школа, 2001 - 512 с., 319 с.

Учебник составлен в соответствии с программой по физической химии.

В первой книге подробно изложены следующие разделы курса: квантовомеханические основы теории химической связи, строение атомов и молекул, спектральные методы исследования молекулярной структуры, феноменологическая и статистическая термодинамика, термодинамика растворов и фазовых равновесий.

Во второй части раздела курса физической химии электрохимия, химическая кинетика и катализ излагаются на основе представлений, развитых в первой части книги, - строение вещества и статистическая термодинамика. В разделе `Катализ` отражены кинетика гетерогенных и диффузионных процессов, термодинамика адсорбции и вопросы реакционной способности.

Для студентов вузов, обучающихся по химико-технологическим специальностям.

Книга 1.

Формат: djvu

Размер: 11,2 Мб

Скачать: drive.google

Книга 2.

Формат: djvu

Размер: 7 Мб

Скачать: drive.google

ОГЛАВЛЕНИЕ Книга 1.
Предисловие. 3
Введение 6
Раздел первый. Квантовомеханическое обоснование теории строения молекул и химической связи
Г л а в а 1. Строение атома 9
§ 1.1. Квантовомеханические особенности микрочастиц 9
§ 1.2. Водородоподобный атом 11
§ 1.3. Атомные орбитали водородоподобного атома 14
§ 1.4. Спин электрона 21
§ 1.5. Многоэлектронные атомы 23
§ 1.6. Принцип Паули 26
§ 1.7. Электронные конфигурации атомов 28
Г л а в а 2. Молекулы. Теоретические методы, применяемые при изучении строения молекул и химической связи 34
§ 2.1. Молекула. Потенциальная поверхность. Равновесная конфигурация 34
§ 2.2. Теория химической связи и ее задачи. Уравнение Шредингера для молекул 39
§ 2.3. Вариационный метод решения уравнения Шредингера 42
§ 2.4. Два основных метода теории строения молекул. Метод валентных связей и метод молекулярных орбиталей 44
§ 2.5. Основные идеи метода молекулярных орбиталей 49
§ 2.6. Приближенное описание молекулярной орбитали в методе МО ЛКАО 50
§ 2.7. Молекула Щ в методе МО ЛКАО. Расчет энергии и волновой функции по вариационному методу 53
§ 2.8. Молекула Н в методе МО ЛКАО. Ковалентная связь 58
Г л а в а 3. Двухатомные молекулы в методе МО ЛКАО 62
§ 3.1. Молекулярные орбитали гомонуклеарных двухатомных молекул 62
§ 3.2. Электронные конфигурации и свойства гомонуклеарных молекул, образованных атомами элементов первого и второго периодов 65
§ 3.3. Гетеронуклеарные двухатомные молекулы 73
§ 3.4. Полярная связь. Электрический дипольный момент молекулы 78
§ 3.5. Насыщаемость ковалентной связи 81
§ 3.6. Донорно-акцепторная связь 82
§ 3.7. Ионная связь. Степень полярности химической связи 84
Г л а в а 4. Многоатомные молекулы в методе МО 88
§ 4.1. Молекулярные орбитали в многоатомных молекулах. Симметрия орбиталей. Делокализованные и локализованные орбитали. Молекула НгО 88
§ 4.2. Описание молекулы метана. Делокализованные и локализованные МО. Гибридизация орбиталей 95
§ 4.3. О предсказании равновесных конфигураций молекул 99
§ 4.4. Нежесткие молекулы 101
§ 4.5. Молекулы с кратными связями в методе МО ЛКАО 104
§ 4.6. Метод Хюккеля 108
§ 4.7. Описание ароматических систем в методе МОХ 110
§ 4.8. Химическая связь в координационных соединениях. Теория поля лигандов 117
§ 4.9. Ионная связь в кристалле 126
Г л а в а 5. Межмолекулярное взаимодействие 129
§ 5.1. Силы Ван-дер-Ваальса. Другие виды неспецифического взаимодействия 129
§ 5.2. Водородная связь 136
Раздел второй. Спектральные методы исследования строения и энергетических состояний молекул
Г л а в а 6. Общие сведения о молекулярных спектрах. Элементы теории молекулярных спектров 141
§ 6.1. Внутримолекулярное движение и электромагнитный спектр. 141
§ 6.2. Молекулярные спектры испускания, поглощения и комбинационного рассеяния. Спектры ЭПР и ЯМР 145
§ 6.3. Вращательный спектр двухатомной молекулы (приближение жесткого ротатора) 150
§ 6.4. Колебательно-вращательный спектр двухатомной молекулы. Приближение гармонического осциллятора 156
§ 6.5. Молекула - ангармонический осциллятор. Структура колебательного спектра 162
§ 6.6. Электронные спектры. Определение энергии диссоциации двухатомных молекул 169
§ 6.7. Вращательные спектры и строгие многоатомных молекул.... 171
§ 6.8. Колебания, спектр и строение многоатомных молекул 175
§ 6.9. Использование колебательных спектров для определения строения молекул 180
§ 6.10. Влияние межмолекулярного взаимодействия среды и агрегатного состояния на колебательный спектр 183
Раздел третий. Химическая термодинамика
Г л а в а 7. Общие понятия. Первый закон термодинамики и его приложение 186
§ 7.1. Предмет и задачи химической термодинамики 186
§ 7.2. Основные понятия и определения химической термодинамики 188
§ 7.3. Первый закон термодинамики. Некруговые процессы 199
§ 7.4. Теплоемкость 202
§ 7.5. Влияние температуры на теплоемкость. Температурные ряды.. 208
§ 7.6. Квантовая теория теплоемкости кристаллического вещества 211
§ 7.7. Квантовостатистическая теория теплоемкости газообразного вещества 215
§ 7.8. Тепловые эффекты. Закон Гесса 217
§ 7.9. Применение закона Гесса к расчету тепловых эффектов 220
§ 7.10. Зависимость теплового эффекта от температуры. Уравнение Кирхгофа 227
Г л а в а 8. Второй закон термодинамики и ею приложение 235
§ 8.1. Самопроизвольные и несамопроизвольные процессы. Второй закон термодинамики 235
§ 8.2. Энтропия 236
§ 8.3. Изменение энтропии в нестатических процессах 239
§ 8.4. Изменение энтропии как критерий направленности и равновесия в изолированной «истеме 240
§ 8.5. Характеристические функции. Термодинамические потенциалы 241
§ 8.6. Критерии возможности самопроизвольного процесса и равновесия в закрытых системах 249
§ 8.7. Изменение энтропии в некоторых процессах 251
§ 8.8. Энергия Гиббса смеси идеальных газов. Химический потенциал 261
§ 8.9. Общие условия химического равновесия 265
§ 8.10. Закон действующих масс. Константа равновесия для газофазных реакций 266
§ 8.11. Уравнение изотермы реакции 271
§ 8.12. Использование закона действующих масс для расчета состава равновесной смеси 273
§ 8.13. Влияние температуры на химическое равновесие. Уравнение изобары реакции 282
§ 8.14. Интегральная форма зависимости изменения энергии Гиббса и константы равновесия от температуры 284
§ 8.15. Химическое равновесие в гетерогенных системах 286
Г л а в а 9. Третий закон термодинамики и расчет химического равновесия 289
§ 9.1. Тепловая теорема Нернста. Третий закон термодинамики 289
§ 9.2. Расчет изменения стандартной энергии Гиббса и константы равновесия по методу Темкина - Шварцмана 294
§ 9.3. Расчет изменения стандартной энергии Гиббса и константы равновесия с помощью функций приведенной энергии Гиббса 297
§ 9.4. Адиабатические реакции 299
Г л а в а 10. Химическое равновесие в реальных системах 303
§ 10.1. Фугитивность и коэффициент фугитивности газов 303
§ 10.2. Расчет химического равновесия в реальной газовой системе при высоких давлениях 312
§ 10.3. Расчет химического равновесия в системах, в которых одновременно протекает несколько реакций 314
Г л а в а 11. Введение в статистическую термодинамику 320
§ 11.1. Статистическая физика и статистическая термодинамика. Макроскопическое и микроскопическое описание состояния системы 320
§ 11.2. Микроскопическое описание состояния методом классической механики 323
§ 11.3. Микроскопическое описание состояния методом квантовой механики. Квантовые статистики 324
§ 11.4. Два вида средних величин (микрокано -нические и канонические средние) 325
§ 11.5. Связь энтропии и статистического веса. Статистический характер второго закона термодинамики 326
§ 11.6. Система в термостате. Каноническое распределение Гиббса. 330
§ 11.7. Сумма по состояниям системы и ее связь с энергией. Гельмгольца 335
§ 11.8. Сумма по состояниям частицы 337
§ 11.9. Выражение термодинамических функций через сумму по состояниям системы 340
§ 11.10. Сумма по состояниям системы одномерных гармонических осцилляторов. Термодинамические свойства одноатомного твердого тела по теории Эйнштейна 343
§ 11.11. Квантовая статистика Больцмана. Закон Максвелла распределения молекул по скоростям 346
§ 11.12. Статистики Ферми - Дирака и Бозе - Эйнштейна 352
§ 11.13.Общие формулы для вычисления термодинамических функций по молекулярным данным 353
§ 11.14.Вычисление термодинамических функций идеального газа в предположении жесткого вращения и гармонических колебаний молекул 357
Раздел четвертый. Растворы
Г л а в а 12. Общая характеристика растворов 365
§ 12.1. Классификация растворов 365
§ 12.2. Концентрация растворов 367
5 12.3. Специфика растворов. Роль межмолекулярного и химического взаимодействий, понятие о сольватации 368
§ 12.4. Основные направления в развитии теории растворов 372
§ 12.5. Термодинамические условия образования растворов 374
§ 12.6. Парциальные молярные величины 375
§ 12.7. Основные методы определения парциальных молярных величин 379
§ 12.8. Парциальные и относительные парциальные молярные энтальпии 381
§ 12.9. Теплоты растворения и разбавления 382
§ 12.10.Термодинамические свойства идеальных жидких растворов 386
§ 12.11.3акон Рауля 390
§ 12.12. Температура кипения идеального раствора 392
§ 12.13.Температура замерзания идеального раствора 395
§ 12.14.0смотическое давление идеального раствора 397
§ 12.15.Неидеальные растворы 400
§ 12.16. Предельно разбавленные, регулярные и атермальные растворы 402
§ 12.17. Активность. Коэффициент активности. Стандартное состояние 404
§ 12.18.0смотический коэффициент 407
§ 12.19.Методы определения активностей 409
§ 12.20.Связь коэффициента активности и активности с термодинамическими свойствами раствора и избыточные термодинамические функции 412
Раздел пятый.Фазовые равновесия
Г л а в а 13. Термодинамическая теория фазовых равновесий 415
§ 13.1. Основные понятия 415
§ 13.2. Условия фазового равновесия 418
§ 13.3. Правило фаз Гиббса 419
Глава 14. Однокомпонентные системы 421
§ 14.1. Применение правила фаз Гиббса к однокомпонентным системам 421
§ 14.2. Фазовые переходы первого и второго рода 422
§ 14.3. Уравнение Клапейрона - Клаузиуса 425
§ 14.4. Давление насыщенного пара 423
§ 14.5. Диаграммы состояния однокомпонентных систем 429
§ 14.6. Диаграмма состояния диоксида углерода 431
§ 14.7. Диаграмма состояния воды 432
§ 14.8. Диаграмма состояния серы 433
§ 14.9. Энантиотропные и монотропные фазовые переходы 435
Г л а в а 15. Двухкомпонентные системы 436
§ 15.1. Метод физико-химического анализа 436
§ 15.2. Применение правила фаз Гиббса к двухкомпонентным системам 437
§ 15.3. Равновесие газ - жидкий раствор в двухкомпонентных системах 438
§ 15.4. Равновесие жидкость - жидкость в двухкомпонентных системах 442
§ 15.5. Равновесие пар - жидкий раствор в двухкомпокентьых системах 444
§ 15.6. Физико-химические основы перегонки растворов 453
§ 15.7. Равновесие кристаллы - жидкий раствор в двухкомпонентных системах 457
§ 15.8. Равновесие жидкость - газ и кристаллы - газ (пар) в двухкомпонентных системах 476
§ 15-9. Расчеты по диаграммам состояния 476
Г л а в а 16. Трехкомпонентные системы 482
§ 16.1. Применение правила фаз Гиббса к трехкомпонентным системам 482
§ 16.2. Графическое изображение состава трехкомпонентной системы 482
§ 16.3. Равновесие кристаллы - жидкий раствор в трехкомпонентных системах 484
§ 16.4. Равновесие жидкость - жидкость в трехкомпонентных системах 489
§ 16.5. Распределение растворяемого вещества между двумя жидкими фазами. Экстракция 491
Приложение 495
Предметный указатель 497

ОГЛАВЛЕНИЕ Книга 2.
Предисловие 3
Раздел шестой. Электрохимия
Г л а в а 17. Растворы, электролитов 4
§ 17.1. Предмет электрохимии 4
§ 17.2. Специфика растворов электролитов 5
§ 17.3. Электролитическая диссоциация в растворе 6
§ 17.4. Средняя ионная активность и коэффициент активности 10
§ 17.5. Основные понятия электростатической теории сильных электролитов Дебая и Хюккеля 13
§ 17.6. Основные понятия теории ассоциации ионов 22
§ 17.7. Термодинамические свойства ионов 24
§ 17.8. Термодинамика ионной сольватации 28
Г л а в а 18. Неравновесные явления в электролитах. Электрическая проводимость электролитов 30
§ 18.1. Основные понятия. Законы Фарадея 30
§ 18.2. Движение ионов в электрическом поле. Числа переноса ионов. 32
§ 18.3. Электрическая проводимость электролитов. Удельная электрическая проводимость 37
§ 18.4. Электрическая проводимость электролитов. Молярная электрическая проводимость 39
§ 18.5. Молярная электрическая проводимость ионов гидроксония и гидроксида 43
§ 18.6. Электрическая проводимость неводных растворов 44
§ 18.7. Электрическая проводимость твердых и расплавленных электролитов 46
§ 18.8. Кондуктометрия 47
Г л а в а 19. Равновесные электродные процессы 49
§ 19.1. Основные понятия 49
§ 19.2. ЭДС электрохимической системы. Электродный потенциал 51
§ 19.3. Возникновение скачка потенциала на границе раствор-металл 53
§ 19.4. Диффузионный потенциал 55
§ 19.5. Строение двойного электрического слоя на границе раствор-металл 56
§ 19.6. Термодинамика обратимых электрохимических систем 60
§ 19.7. Классификация обратимых электродов 64
§ 19.8. Электродные потенциалы в неводных растворах 74
§ 19.9. Электрохимические цепи 75
§ 19.10. Применение теории электрохимических систем к изучению равновесия в растворах 82
§ 19.11. Потенциометрия 85
Раздел седьмой. Кинетика химических реакций
Г л а в а 20. Законы химической кинетики 93
§ 20.1. Общие понятия и определения 93
§ 20.2. Скорость химической реакции 95
§ 20.3. Закон действующих масс и принцип независимости протекания реакций 101
Г л а в а 21. Кинетика химических реакций в закрытых системах. 105
§ 21.1. Односторонние реакции первого порядка 105
§ 21.2. Односторонние реакции второго порядка 109
§ 21.3. Односторонние реакции n-го порядка 111
§ 21.4. Методы определения порядка реакции 112
§ 21.5. Двусторонние реакции первого порядка 113
§ 21.6. Двусторонние реакции второго порядка 116
§ 21.Т. Параллельные односторонние реакции 117
§ 21.8. Односторонние последовательные реакции 119
§ 21.9. Метод квазистационарных концентраций 125
Г л а в а 22. Кинетика реакций в открытых системах 127
§ 22.1. Кинетика реакций в реакторе идеального смешения 127
§ 22.2. Кинетика реакций в реакторе идеального вытеснения 129
Г л а в а 23. Теория элементарного акта химического взаимодействия 133
§ 23.1. Элементарный химический акт 133
§ 23.2. Теория активных соударений 137
§ 23.3. Теория активированного комплекса 141
§ 23.4. Предэкспоненциальный множитель в уравнении Аррениуса по теории переходного состояния 154
§ 23.5. Симметрия МО и энергия активации химических реакций 159
Г л а в а 24. Кинетика реакций в растворах, цепные и фотохимические реакции 166
§ 24.1. Особенности кинетики реакций в растворах 166
§ 24.2. Влияние среды на константу скорости реакции 170
§ 24.3. Кинетика ионных реакций в растворах 178
§ 24.4. Цепные реакции 181
§ 24.5. Фотохимические реакции 189
Г л а в а 25. Кинетика электродных процессов 196
§ 25.1. Скорость электрохимической реакции. Ток обмена 196
§ 25.2. Электродная поляризация 197
§ 25.3. Диффузионное перенапряжение 199
§ 25.4. Электрохимическое перенапряжение 205
§ 25.5. Другие виды перенапряжения 210
5 25.6. Температурно-кинетический метод определения природы поляризации при электрохимических процессах 211
§ 25.7. Перенапряжение при электролитическом выделении водорода 213
§ 25.8. Электролиз. Напряжение разложения 217
§ 25.9. Поляризационные явления в химических источниках электрического тока 220
§ 25.10. Электрохимическая коррозия металлов. Пассивность металлов. Методы защиты от коррозии 222
Раздел восьмой. Катализ
Г л а в а 26. Принципы каталитическою действия 228
§ 26.1. Основные понятия и определения 228
§ 26.2. Особенности кинетики каталитических реакций 232
§ 26.3. Энергия активации каталитических реакций 237
§ 26.4. Взаимодействие реагентов с катализатором и принципы каталитического действия 241
Г л а в а 27. Гомогенный катализ 245
§ 27.1. Кислотно-основный катализ 246
§ 27.2. Окислительно-восстановительный катализ 255
§ 27.3. Ферментативный катализ 260
§ 27.4. Автокатализ, ингибирование и периодические каталитические реакции 266
§ 27.5. Применение в промышленности и перспективы развития гомогенного катализа 271
Г л а в а 28. Гетерогенный катализ. 273
§ 28.1. Структура поверхности гетерогенных катализаторов 273
§ 28.2. Адсорбция как стадия гетерогенно-каталитических реакций 277
§ 28.3. Механизм гетерогенно-каталитических реакций 282
§ 28.4. Кинетика гетерогенно-каталитических реакций на равнодоступной поверхности 285
§ 28.5. Макрокинетика гетерогенно-каталитических процессов 292
§ 28.6. Применение гетерогенного катализа в промышленности 300
Литература 303
Приложение 305
Предметный указатель 312
Оглавление 316